Physics in the News

Wednesday, September 3, 2014

Researchers discover new clues to determining the solar cycle

Magnetic stripes of solar material – with alternating south and north polarity – march toward the sun's equator. Such observations may change the way we think about what's driving the sun's 22-year solar cycle. (Credit:  S. McIntosh)
Magnetic stripes of solar material – with alternating south and north polarity – march toward the sun’s equator. Such observations may change the way we think about what’s driving the sun’s 22-year solar cycle. (Credit: S. McIntosh)
via nasa

Finding the ‘Holy Grail’ of making smarter robots

via abcnews

Do most cosmologists accept the reality of the cosmic fine tuning?

via winteryknight

DARPA’s experimental space plane XS-1 starts development

via dailycaller

How the space craft Dawn will get the low-down on the first dwarf planet ever discovered

This image illustrates Dawn’s spiral transfer from high altitude mapping orbit (HAMO) to low altitude mapping orbit (LAMO). The trajectory turns from blue to red as time progresses over two months. Red dashed sections are where ion thrusting is stopped so the spacecraft can point its main antenna toward Earth. (Credit: NASA/JPL-Caltech)

This image illustrates Dawn’s spiral transfer from high altitude mapping orbit (HAMO) to low altitude mapping orbit (LAMO). The trajectory turns from blue to red as time progresses over two months. Red dashed sections are where ion thrusting is stopped so the spacecraft can point its main antenna toward Earth. (Credit: NASA/JPL-Caltech)

via nasa

Japan’s decade long mission to mine an asteroid

The little mushroom cap between the two high-gain antennas is the X-band low-gain antenna. The little blue thing is DCAM3, a deployable camera that will hopefully take pictures of the explosion and impact of Hayabusa's "Small Carry-on Impactor" while the mothership hides safely in the shadow of the asteroid.

The little mushroom cap between the two high-gain antennas is the X-band low-gain antenna. The little blue thing is DCAM3, a deployable camera that will hopefully take pictures of the explosion and impact of Hayabusa’s “Small Carry-on Impactor” while the mothership hides safely in the shadow of the asteroid. (Credit: Lakdawalla)

via gizmodo

Phase change memory lets a single bit act as different logic gates

Phase change materials can switch between two forms depending on how quickly they're cooled. Cool them quickly and you get an amorphous form, which provides significant resistance to the flow of electrons. Cool them slowly and they will allow electrons to flow more readily. Once cooled, these two forms remain stable, locking the differences in conduction in place. (Credit: Columbia University)

Phase change materials can switch between two forms depending on how quickly they’re cooled. Cool them quickly and you get an amorphous form, which provides significant resistance to the flow of electrons. Cool them slowly and they will allow electrons to flow more readily. Once cooled, these two forms remain stable, locking the differences in conduction in place. (Credit: Columbia University, Timmer)

via arstechnica

Rosetta set for ‘capture’ manoeuvres

Rosetta scientists will be heading to Lisbon, Portugal, next week to present their early impressions of the comet to their peers.

Rosetta scientists will be heading to Lisbon, Portugal, next week to present their early  impressions of the comet to their peers.

via bbc

Deflecting near Earth asteroids with paint

The Yarkovsky Effect: The daylight side absorbs the solar radiation. As the object rotates, the dusk side cools down and hence emits more thermal photons than the dawn side. It may be possible to exploit this effect for planetary defense.

The Yarkovsky Effect: The daylight side absorbs the solar radiation. As the object rotates, the dusk side cools down and hence emits more thermal photons than the dawn side. It may be possible to exploit this effect for planetary defense.

via thespacereview

The beginning of extra-galactic Neutrino astronomy

 An event in the IceCube neutrino telescope. Photomultipliers attached to strings buried deep in the Antarctic ice detect the bursts of light emitted when a neutrino collides with the ice and produces a muon. The event shown was generated by an upward moving muon, which was produced by an upward moving muon neutrino that passed through the Earth.  APS/Joan Tycko;

An event in the IceCube neutrino telescope. Photomultipliers attached to strings buried deep in the Antarctic ice detect the bursts of light emitted when a neutrino collides with the ice and produces a muon. The event shown was generated by an upward moving muon, which was produced by an upward moving muon neutrino that passed through the Earth. APS/Joan Tycko;

via physics.aps

Is it the era of racing for colliders’ physics?

A 1974 photo of the part named Intersection 5 (I5) of the ISR of CERN's old PS, clearly shows the layout of the magnets and the crossing of the two beams pipes. (Credit: Salem)

A 1974 photo of the part named Intersection 5 (I5) of the ISR of CERN’s old PS, clearly shows the layout of the magnets and the crossing of the two beams pipes. (Credit: Salem)

via onislam

Design completed for prototype fast reactor

Russian power engineering R&D institute NIKIET has completed the engineering design for the BREST-300 lead-cooled fast reactor.  (NIKIET)

Russian power engineering R&D institute NIKIET has completed the engineering design for the BREST-300 lead-cooled fast reactor. (NIKIET)

via world-nuclear-news

Leave a Comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s