Few scientists doubt that Einstein was right. But the mathematics describing the time-dilation effect are “fundamental to all physical theories”, says Thomas Udem, a physicist at the Max Planck Institute for Quantum Optics in Garching, Germany, who was not involved in the research. “It is of utmost importance to verify it with the best possible accuracy.” (Credit: A. Witze, Martin Poole/Getty)
via nature
Graphic representation of a seaborgium hexacarbonyl molecule on the silicon dioxide covered detectors of a COMPACT detector array. (Credit: Alexander Yakushev (GSI) / Christoph E. Düllmann)
via newscientist
A transmission electron microscopic image of titanium dioxide plates resting on a near-invisible sheet of graphene. (Credit: Rozhkova et. al.)
via anl.gov
There have been recent near misses – an explosion over Russia, a mysterious crater in Nicaragua. But what would we do in the event of an actual meteor strike? A simulated meteor strike at a training facility in Texas. (Credit: Nick Ballon)
via theguardian
ITTY BITTY LIVING SPACE The tiny galaxy M60-UCD1 (circled in white) harbors a black hole with the mass of around 21 million suns. M60-UCD1 may be a remnant of a larger galaxy torn apart by the massive galaxy M60 (center), which is also pulling in a nearby spiral galaxy (upper right). (Credit: NASA, ESA)
via sciencenews
The illustration shows how oscillating photons create an image of frozen light. At first, photons in the experiment flow easily between two superconducting sites, producing the large waves shown at left. After a time, the scientists cause the light to ‘freeze,’ trapping the photons in place. Fast oscillations on the right of the image are evidence of the new trapped behavior. (Credit: James Raftery et al.)
via princeton
Pakistan is a signing ceremony away from becoming the associate member of the European Organisation for Nuclear Research. Above photo is CERN Labs on the Swiss-French border. (Credit: CERN)
via dawn
The quasicrystals formed 4.5 billion years ago in a violent collision between two rocks, among the asteroids that coalesced into planets. The rock with the quasicrystals landed in Chukotka as a meteorite. “They’re part of the primal stuff that formed our solar system,” Dr. Steinhardt said. The above is A penteract (5-cube) pattern using 5D orthographic projection to 2D using Petrie polygon basis vectors overlaid on the diffractogram from an Icosahedral Ho-Mg-Zn quasicrystal. (Credit: NYTimes)
via nytimes