Geoffrey Lovelace is an Assistant Professor of Physics at California State University, Fullerton. As member of Fullerton’s Gravitational-Wave Physics and Astronomy Center and the Simulating eXtreme Spacetimes collaboration, his research interests focus on using computer simulations to model colliding black holes and neutron stars and the gravitational waves they emit.
A single black hole’s size limits its spin. Do colliding black holes obey this limit?
In our recent paper, published in Classical and Quantum Gravity, we take a first look at how supercomputer simulations can help reveal the answer.
A black hole is an object whose gravity is so strong that nothing, even light, can escape from inside its horizon. An isolated, uncharged black hole can be completely described by just two numbers: its spin and its horizon surface area. All of the black hole’s properties then follow from Kerr’s solution of Einstein’s equations.
Kerr’s solution implies…
View original post 497 more words