The Scientific Association for the Study of Time in Physics and Cosmology is very honored to present Stuart Hameroff, M.D., anesthesiologist and Professor in the Departments of Anesthesiology and Psychology, and Director of the Center for Consciousness Studies at Banner-University Medical Center, The University of Arizona, as the fall speaker for the SASTPC Speaker Series Free Public Lectures.
The Leonids are a prolific meteor shower associated with the comet Tempel-Tuttle. The Leonids get their name from the location of their radiant in the constellation Leo: the meteors appear to radiate from that point in the sky. (Credit: Wiki)
The November path of the radiant of the 2014 Leonids. Credit: Starry Night Education Software.
The Leonid meteor shower is forecasted to peak Monday afternoon (Nov. 17) in the U.S. eastern time zone, so stargazers in the United States are advised to look to the skies between midnight and dawn on Monday and Tuesday morning for the best view, astronomers say. This year, the Leonid meteor shower should treat skywatchers to beween 10 and 15 meteors per hour, NASA meteor expert Bill Cook, head of the Meteoroid Environment Office at the agency’s Marshall Space Flight Center in Huntsville, Alabama, told Space.com. For some meteor showers, that’s considered a decent rate.
NASA’s live stream will include a sky view from a telescope at Marshall Space Flight Center in Alabama. That stream will begin on Monday, Nov. 17 at 7:30 p.m. EST (0030 GMT Tuesday) and will continue until sunrise on Tuesday Nov. 18.
A meteor during the peak of the 2009 Leonid Meteor Shower. The photograph shows the meteor, afterglow, and wake as distinct components.(Credit: Wiki)
The Slooh live stream will begin on Monday, Nov. 17 at 8:00 p.m. EST (0100 GMT Tuesday) and will include more than just shots of the sky: Slooh will also broadcast audio of the “ionization sounds” created by the meteors. As the meteors streak through the sky, they briefly ionize the atmosphere. For a few seconds, the ionized region reflects short-wavelength radio waves, creating short blips and beeps of sound. Slooh’s broadcast will also include interviews with astronomers. (Credit: Calla Cofield and Spacce.com)
The waning-crescent moon will increase chances of a better view of the spectacle, according to NASA. This type of moon will create skies that are dark enough to view the meteors, which are characteristically bright and colorful.
“Widespread cloud cover across the eastern third of the U.S. will make it difficult to see the meteor shower Monday before dawn, except perhaps in central and south Florida. Skies should be much clearer Tuesday morning, though it may take until late at night for New England to clear out, and there will be clouds in south Florida and in the lake-effect snow belts of the Great Lakes. Clear skies will be the rule across the central and western U.S. both mornings, with only a few minor exceptions,” said Digital Meteorologist, Nick Wiltgen, from weather.com. (Credit: Carolyn Williams, weather.com)
This diagram maps the data gathered from 1994-2013 on small asteroids impacting Earth’s atmosphere to create very bright meteors, technically called “bolides” and commonly referred to as “fireballs”. Sizes of red dots (daytime impacts) and blue dots (nighttime impacts) are proportional to the optical radiated energy of impacts measured in billions of Joules (GJ) of energy, and show the location of impacts from objects about 1 meter (3 feet) to almost 20 meters (60 feet) in size. Image (Credit: Planetary Science)
via scientificamerican
if we have a system of qubits all in the same state (with the same probability distributions), we have identical qubits, even though we might get different results upon measuring the individual qubits. Strangely enough, particles in the quantum world can be both identical and distinct at the same time. (Credit: M. Byrne)
This composite X-ray/radio image of Abell 400 shows radio jets (pink), immersed in a vast cloud of multimillion degree X-ray emitting gas (blue) that pervades the cluster. The jets emanate from the vicinity of two supermassive black holes (bright spots in the image) in the galaxy. Chandra and radio data confirm that the unusual structure is due to the merger of two large galaxies, whose supermassive black holes are bound together by their mutual gravity. (Credit: X-Ray: NASA/CXC/D. Hudson, T.Reiprich et al. (AIfA); Radio: NRAO/VLA/ NRL)
via phys
a region of jet activity can be seen at the neck of the comet. These jets, originating from several discrete locations, are a product of ices sublimating and gases escaping from inside the nucleus. (Credit: ESA, NASA)
via phys.org
Researcher will mash together the visual recognition skills of humans and the spatial memory system of rats to enable robots to navigate in any environmental conditions. (Credit: The Australian)
via theaustralian
The image above shows a standard prediction for the dark matter distribution within about 1 million light years of the Milky Way galaxy, which is expected to be swarming with thousands of small dark matter clumps called `halos’. (Credit: Garrison, Kimmel, Bullock, UCI)
via dailygalaxy
There is no doubt in my mind that society invests its billions well if it invests in theoretical physics. Whether that investment should go into particle colliders though is a different question. I don’t have a good answer to that, and I don’t see that the question is seriously being discussed. (Credit: Hossenfelder)
via backreaction
The vibrant, starry stream of the Milky Way frames radio telescopes of the Atacama Large Millimeter/submillimeter Array – known as the ALMA Observatory – in Chile’s Atacama Desert. (Credit: Y. Beletsky/ESO)
via cornell
Two international teams of astronomers using the Hubble Space Telescope and ground-based telescopes in Australia and Chile have discovered the first examples of isolated stellar-mass black holes adrift among the stars in our galaxy. (Credit: NASA/ESA, D. Bennett)
via backreaction
The first teleportation of a photon inside a photonic chip illustrates both the potential for quantum computation and the significant challenges that lay ahead.
via technologyreview
rtist’s concept of an atom chip for use by NASA’s Cold Atom Laboratory (CAL) aboard the International Space Station. CAL will use lasers to cool atoms to ultracold temperatures. (Credit: NASA)
via jpl
A paper just released by the team behind Planck, a European space telescope, casts serious doubt on the BICEP-2 result. (Credit: D. Simonds)
via economist
“The atomic age is an incredible epoch, filled with people we think we know already—from Marie Curie and Albert Einstein to Ronald Reagan and the plant workers of Fukushima—but they all turn out to be a lot more complicated and interesting than any of us could’ve imagined,” says Nelson. (Credit: Helvio Faria)
via scitation
Dust map of the Universe. The region studied by BICEP2 is indicated by the rectangle in the right circle. (Credit: Planck Collaboration)
via universetoday
n this illustration, the artificial atom on the right side of the image sends out sound waves that are picked up by the microphone on the left. (Credit: Philip Krantz)
via livescience
A serious challenge to the discovery of gravity waves by the BICEP2 2014 results has appeared: the researchers had underestimated the amount of interstellar dust that could be contaminating their data. (Credit: MacRobert, Andrei Linde)
via skyandtelescope
Scientists have found definitive traces of water on a relatively small exoplanet. HAT-P-11b is the size of Neptune and four times the size of Earth. The exoplanet has copious amounts of both water vapor and hydrogen in its atmosphere. (Credit: NASA)
via bbc
Our current model of the early inflationary period predicts that the universe should be flat, and so far that has held up. If the universe actually is curved, then the inflationary period must have been more complex than we have thought. (Credit: Koberlien)
via phys.org