Upper plot shows the slope of positron fraction measured by AMS (red circles) and a straight line fit at the highest energies (blue line). The data show that at 275±32 GeV the slope crosses zero. Lower plot shows the measured positron fraction as function of energy as well as the location of the maximum. (Credit CERN)
via interactions
An organic light-emitting diode, or OLED, glows orange when electrical current flows through it. It is a step toward ‘spintronic’ devices such as faster computers, better data storage and more efficient OLEDs for TV, computer and cell phone displays. (Credit: Andy Brimhall, University of Utah)
via phys.org
This revolutionary work could open up new real estate in the phone by embedding the glass with layer upon layer of sensors, including ones that could take your temperature, assess your blood sugar levels if you’re diabetic or even analyze DNA. (Credit: Jerome Lapointe, Mathieu Gagné, Ming-Jun Li, and Raman Kashyap)
via mediacastermagazine
The NASA/ESA Hubble Space Telescope has produced this finely detailed image of the beautiful spiral galaxy NGC 6384. This galaxy lies in the constellation of Ophiuchus (The Serpent Bearer), not far from the centre of the Milky Way on the sky. The positioning of NGC 6384 means that we have to peer at it past many dazzling foreground Milky Way stars that are scattered across this image. (Credit NASA/ESA)
via nationalgeographic
he problem was first identified some time ago. Dubbed the “cosmological lithium discrepancy,” the issue is very simple: everything we know about the Big Bang, supernovae, and the dynamics of stars, tells us that we should find a very specific concentration of lithium in the universe at large — but the universe actually seems to contain far less than that amount. (Credit: NASA, HUbble)
European Space Agency’s Giotto probe returned 2333 images during the Comet Halley encounter of March 13-14, 1986. All were recorded before the closest approach of 596 km at 00:03:02 UTC on 14 March 1986; the last from a distance of 1180 km, 15 seconds before closest approach. (Credit: MPAE, Dr H.U. Keller.
An Atlas V rocket lifts off with the mysterious CLIO satellite. The rocket was carrying a satellite known only as CLIO, which it delivered into an unidentified (though probably geosynchronous) orbit. (Credit: ULA)
via forbes
Random number generator setup: a camera is fully and homogeneously illuminated by a LED. The raw binary representation of pixel values are concatenated and passed through a randomness extractor. This extractor outputs quantum random numbers. (Credit: arXiv:1405.0435 [quant-ph])
Science says the universe could be a hologram, a computer program, a black hole or a bubble—and there are ways to check. (Credit: NASA, ESA, SAO, CXC, JPL-Caltech, and STScI)
via smithsonianmag
The X-ray image from the Swift X-ray Telescope of the gamma-ray burst GRB 130925. The white object in the center is the gamma-ray burst. The large diffuse region to the right is a cluster of galaxies. The other objects are X-ray-emitting celestial objects, most likely supermassive black holes at the centers of distant galaxies. The full image is approximately the size of the full moon. (Credit: Phil Evans/ University of Leicester)
via psu
The Borexino collaboration, which announced the detection of an elusive solar neutrino in August, involved several scientific contributions from Princeton over its 25-year history. The detector consists of two massive transparent nylon balloons filled with a petroleum-based liquid called “scintillator,” which emits a flash of light when it detects a neutrino. These flashes are picked up by an array of sensors embedded in a stainless steel sphere that surrounds the balloons. (Credit: Borexino collaboration)
via princeton
The experiment effectively measures the shift in the laser frequencies relative to what these transition frequencies are for ions at rest. The combination of two frequency shifts eliminates uncertain parameters and allows the team to validate the time dilation prediction to a few parts per billion, improving on previous limits. The result complements other Lorentz violation tests that use higher precision atomic clocks but much slower relative velocities. (Credit: Botermann, et al., Schirber)
via aps.org
The image above is a comparison of the radial density profiles of the galaxies which the researchers have created by displaying the soliton in the centre of each galaxy with a halo surrounding it. The solitons are broader but have less mass in the smaller galaxies. (Credit: /kipac.stanford.edu/kipac/media)
via dailygalaxy
The sky facing south at nightfall in late September from a dark, light-pollution-free site with stars visible to magnitude 6.5, the naked eye limit. (Credit: Stellarium)
via skyandtelescope
Artistic rendering of the generation of an entangled pair of photons by spontaneous parametric down-conversion as a laser beam passes through a nonlinear crystal. Inspired by an image in Dance of the Photons. (Credit: A. Zeilinger)
via newswise
The Tevatron, the particle accelerator used to find the oscillating Bs meson, has huge detectors surrounded by a cylindrical ‘tracking chamber’, shown here. (Credit: Fermilab)
via cornell
On Mercury a solar day is about 176 Earth days long. During its first Mercury solar day in orbit the MESSENGER spacecraft imaged nearly the entire surface of Mercury to generate a global monochrome map at 250 meters per pixel resolution and a 1 kilometer per pixel resolution color map. (Credit: NASA/JHU APL/CIW)
via phys.org
The researchers observed for the first time coherent oscillations between two spin states: |e↑,g↓〉⇔|e↓,g↑〉. From the oscillation frequency, they determine the spin-exchange interaction strength. (Credit: APS/Ana Maria Rey)
via physics.aps
NASA has found about 95 per cent of the largest and potentially most destructive asteroids, those measuring about one kilometre or larger in diameter, but only 10 per cent of those 140 metres or larger in diameter. (NASA/JPL-Caltech/Canadian Press)
via cbslocal
Rendering of the near–perfect crystal structure of the yttrium–iron–aluminum compound used in the study. The two–dimensional layers of the material allowed the scientists to isolate the magnetic ordering that emerged near absolute zero. (Credit:Brookhaven National Laboratory)
via azoquantum
Diamond anvils malformed during synthesis of ultrahard fullerite. Note the dent in the center. (Credit: Moscow Institute of Physics and Technology)
via nextbigfuture
“I confess that in my early in my career as a physicist I was rather cynical about sophisticated statistical tools, being of the opinion that “if any of this makes a difference, just get more data”. That is, if you do enough experiments, the confidence level will be so high that the exact statistical treatment you use to evaluate it is irrelevant.” (Credit: Jon Butterworth)
via theguardian
It was the daytime soap opera of particle physics. But the final episode of the first season ends in an anticlimax. The Higgs boson’s decay into pairs of photons – the strongest yet most confusing clue to the particle’s existence – is looking utterly normal after all. (Credit: D. Moir/Reurters, M. Slezak)
via newscientist
NIST chip containing a single-photon detector was made of superconducting nanowires. Four chips like this were used in the experiment that entangled three photons. (Credit: Verma/NIST)
via extremetech
The new plan, proposed by researchers at the University of Southampton in England, is to eavesdrop on the faint nanosecond radio signals sent our way when cosmic rays hit edges of the Moon at a near-tangent. (Credit J. Hewitt, astrobiology.aob.rs)
via extremetech
“The key question is whether a real quantum dynamics, of the general form suggested by de Broglie and the walking drops, might underlie quantum statistics,” Bush said. “While undoubtedly complex, it would replace the philosophical vagaries of quantum mechanics with a concrete dynamical theory,” said John Bush of MIT. (Credit: D. Harris/MIT, M. Byrne)
via motherboard
A composite photo of comet 67P/C-G showing gases escaping from the ‘neck’. The first jets of dust were detected spurting from the comet as Rosetta approached it in August but detailed photographs weren’t available until last week. (Credit: Emily Lakdawalla/ESA)
via forbes
The spacecraft captured the views between July 20 and July 22, 2014, as it departed Titan following a flyby. Cassini tracked the system of clouds as it developed and dissipated over Ligeia Mare during this two-day period. Measurements of the cloud motions indicate wind speeds of around 7 to 10 miles per hour (3 to 4.5 meters per second). (Credit: NASA, Cassini)
via smithsonianmag
Less than two months after it first began repeatedly scanning the sky, the ESA’s Gaia space observatory has discovered its first supernova – a powerful stellar explosion that had occurred in a distant galaxy located some 500 million light-years from Earth, the agency announced on Friday. The above is an artist’s impression of a Type Ia supernova – the explosion of a white dwarf locked in a binary system with a companion star. (Credit: ESA/ATG medialab/C. Carreau, Bednar)
via redorbit
Grain boundaries are rows of defects that disrupt the electronic properties of two-dimensional materials, like graphene, but a new theory by scientists at Rice University shows no such effects in atomically flat phosphorus. That may make the material ideal for nano-electronic applications. (Credit: Evgeni Penev/Rice University)
via energy-daily
To find out if the universe is a hologram, scientists at the U.S. Department of Energy’s Fermi National Accelerator Laboratory have powered up their exotic holographic inferometer, or Holometer. The results of the Fermilab E-990 experiment could indeed indicate that the nature of the universe is holographic. (Credit: Baskin, M. Freiberger)
via guardianlv
The ultimate fate of the universe depends on the nature of dark matter and dark energy, about which we know almost nothing. (Credit: NASA)
via mysteriousuniverse
This is an artist’s impression of supernova 1993J, an exploding star in the galaxy M81 whose light reached us 21 years ago. The supernova originated in a double-star system where one member was a massive star that exploded after siphoning most of its hydrogen envelope to its companion star. After two decades, astronomers have at last identified the blue helium-burning companion star, seen at the center of the expanding nebula of debris from the supernova. The Hubble Space Telescope identified the ultraviolet glow of the surviving companion embedded in the fading glow of the supernova. (Credit: NASA)
via sciencedaily
The nearby galaxy Centaurus A as viewed at X-ray, radio, and optical wavelengths, showing jets powered by a massive black hole at the center of the galaxy. (Credit: NASA)
via bigislandnow
Researchers at UT Arlington have created the first electronic device that can cool electrons to -228 degrees Celsius (-375F), without any kind of external cooling. (Credit: S. Anthony)
via extremetech
“Our research strengthens the argument that methane and oxygen together, or methane and ozone together, are still strong signatures of life. That’s because oxygen and methane abhor each other. An atmosphere heavy in one of these gases has to have its supplies of the other continually replenished, and the most reliable way that happens on Earth is through the mechanisms of life,” said Shawn Domagal-Goldman of NASA’s Goddard Space Flight Center. (Credit: NASA, B. Richmond)
via motherboard
“When you get off the plane at the South Pole, there is a feeling like you’re out in the ocean,” says University of Chicago physicist John Carlstrom, the principal investigator for the South Pole Telescope team, who has logged 15 round trips to the South Pole over the past two decades. “It’s just a featureless horizon. The snow is so dry it feels like Styrofoam.” (Credit: J. Gallicchio, G. Roberts Jr.)
via symmetrymagazine