Physics in the News

Thursday, September 4, 2014

New map locates Milky Way in neighborhood of 100,000 galaxies

A new map places the Milky Way (black dot) within a large supercluster of galaxies (white dots) by tracing the gravitational pull of galaxies toward one another. White filaments reveal the paths of galaxies moving toward a gravitational center in the new supercluster, dubbed "Laniakea." (Blue, low galaxy density; green, intermediate; red, high.) SDvision interactive visualization software by DP at CEA/Saclay, France)
A new map places the Milky Way (black dot) within a large supercluster of galaxies (white dots) by tracing the gravitational pull of galaxies toward one another. White filaments reveal the paths of galaxies moving toward a gravitational center in the new supercluster, dubbed “Laniakea.” (Blue, low galaxy density; green, intermediate; red, high.) (Credit: DP at CEA/Saclay, France)
via nationalgeographic

Small asteroid to safely pass close to Earth Sunday

via nasa

Researcher advances a new model for a cosmological enigma — dark matter

This three-dimensional map offers a first look at the web-like large-scale distribution of dark matter, an invisible form of matter that accounts for most of the Universe's imaginary mass. The map reveals a loose network of dark matter filaments, gradually collapsing under the relentless pull of gravity, and growing clumpier over time. The three axes of the box correspond to sky position (in right ascension and declination), and distance from the Earth increasing from left to right (as measured by cosmological redshift). Note how the clumping of the dark matter becomes more pronounced, moving right to left across the volume map, from the early Universe to the more recent Universe.
This three-dimensional map offers a first look at the web-like large-scale distribution of dark matter, an invisible form of matter that accounts for most of the Universe’s imaginary mass. The map reveals a loose network of dark matter filaments, gradually collapsing under the relentless pull of gravity, and growing clumpier over time. The three axes of the box correspond to sky position, and distance from the Earth increasing from left to right. Note how the clumping of the dark matter becomes more pronounced, moving right to left across the volume map, from the early Universe to the more recent Universe. (Credit: NASA/ESA/Richard Massey)
via ku.edu

Dark energy hunt gets weird

mg22329852.400-1_300
Cosmologists have revealed intruiging new ways to probe the mystery of whether dark energy exists and how it might be accelerating the universe’s growth. (Credit: Picturegarden/Getty)
via newscientist

Watching ‘the clock’ at the LHC

As time ticks down to the restart of the Large Hadron Collider, scientists are making sure their detectors run like clockwork.Photo by Antonio Saba, CERN
As time ticks down to the restart of the Large Hadron Collider, scientists are making sure their detectors run like clockwork.  (Credit: Antonio Saba, CERN)
via symmetrymagazine

Mind-blowing science explained: Neutron stars “are basically atoms as big as mountains”

via salon

Ultracold atoms juggle spins with exceptional symmetry

Schematic representation of a spin-exchanging collision. Two atoms in different orbitals (blue and green) and different spin orientations (black arrows) collide. The two atoms exiting the collision have swapped their spins after interacting. Crucially, the process is independent of the two specific initial spin states. Credit: LMU-München / MPQ, Quantum Many Body Systems Division Read more at: http://phys.org
Schematic representation of a spin-exchanging collision. Two atoms in different orbitals (blue and green) and different spin orientations (black arrows) collide. The two atoms exiting the collision have swapped their spins after interacting. Crucially, the process is independent of the two specific initial spin states. (Credit: LMU-München / MPQ, Quantum Many Body Systems Division)
via phys.org

How the enormous mirrors on the world’s largest telescope are made

The Giant Magellan Telescope (GMT) is a ground-based extremely large telescope planned for completion in 2020.[5] It will consist of seven 8.4 m (27.6 ft) diameter primary segments,[6] with the resolving power of a 24.5 m (80.4 ft) primary mirror and collecting area equivalent to a 22.0 m (72.2 ft) one,[7] (which is about 368 square meters) (Credit: wiki, Tarantola)
via gizmodo

Cosmic forecast: Dark clouds will give way to sunshine

via phys.org

Do exoplanets transform between classes?

A new analysis suggests that hot super-Earths might be the skeletal remnants of hot Jupiters stripped of their atmospheres. The above image is an artist’s depiction of an early stage in the destruction of a hot Jupiter by its star. (Credit: NASA / GSFC / Reddy, S. Hall)
via skyandtelescope

Physics in the News

Tuesday, September 2, 2014

Tragedy: Russia’s orbiting zero-g sex geckos have all died

These aren't our illustrious orbiting sex geckos, but they are the experiment's ground-based control sex geckos, and that's almost as good!
These aren’t our illustrious orbiting sex geckos, but they are the experiment’s ground-based control sex geckos. (credit: imbp.ru)
via arstechnica

Out of this world! Astronaut captures release of Cygnus spacecraft in incredible timelapse from International Space Station

via slate

Time travel simulation resolves “Grandfather Paradox”

Entering a closed timelike curve tomorrow means you could end up at today. Credit: Dmitry Schidlovsky
Entering a closed timelike curve tomorrow means you could end up at today.
Credit: Dmitry Schidlovsky
via scientificamerican

Geometric meaning of the black hole horizon (PDF)

The event horizon is the boundary between a black hole and the rest of the universe. Any matter that spirals in toward the black hole and crosses the event horizon disappears. Ann Feild, Space Telescope Science Institute
Recent proposals postulate the existence of a “firewall” at the event horizon that may incinerate an infalling observer. These proposals face an apparent paradox if a freely falling observer detects nothing special in the vicinity of the horizon. (Credit: Moffat, Toth, Feild)
via mathoverflow

Google partners with UCSB to build quantum processors for artificial intelligence

photo: Erik Lucero / University of California, Santa Barbara
Google is going beyond using other people’s hardware. “With an integrated hardware group, the Quantum AI team at Google will now be able to implement and test new designs for quantum optimization and inference processors based on recent theoretical progress and insights from the D-Wave quantum annealing architecture,” says Hartmut Neven, Google’s Director of Engineering. (Credit: E. Lucero(UCSB), Lardinois)
via techcrunch

Research aimed at the heart of the Sun

 Inside the Borexino detector used to detect neutrinos from the sun. Credit Borexino Collaboration
Inside the Borexino detector used to detect neutrinos from the sun. Credit Borexino Collaboration
via nytimes

Watch a beautiful, powerful solar eruption

via latimes

Physics in the News

Friday, August 29, 2014

First robot astronaut ‘lonely’ in space

via independent

Keck observatory gives astronomers first glimpse of monster galaxy formation

This image shows observations of a newly discovered galaxy core dubbed GOODS-N-774, taken by the NASA/ESA Hubble Space Telescope's Wide Field Camera 3 and Advanced Camera for Surveys. The core is marked by the box inset, overlaid on a section of the Hubble GOODS-N, or GOODS North, field (Great Observatories Origins Deep Survey). (Credit: NASA, ESA)
This image shows observations of a newly discovered galaxy core dubbed GOODS-N-774, taken by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys. The core is marked by the box inset, overlaid on a section of the Hubble GOODS-N, or GOODS North, field (Great Observatories Origins Deep Survey). (Credit: NASA, ESA)
via phys.org

We are swimming in a superhot supernova soup

Physics in the News

Thursday, August 28, 2014

“Spooky” quantum entanglement reveals invisible objects

In the new experiment, the physicists entangled photons in two separate laser beams with different wavelengths, and hence color: one yellow and one red.
“This is a long-standing, really neat experimental idea,” says Paul Lett, of the National Institute of Standards and Technology in GaithersburgLett, “Now we have to see whether or not it will lead to something practical, or will remain just a clever demonstration of quantum mechanics.”(CreditBarreto-Lemos, Vergano)
via nationalgeographic

Strange neutrinos from the sun detected for the first time

The Borexino neutrino detector uses a sphere filled with liquid scintillator that emits light when excited. This inner vessel is surrounded by layers of shielding and by about 2,000 photomultiplier tubes to detect the light flashes.(Credit: Borexino Collaboration)
The Borexino neutrino detector uses a sphere filled with liquid scintillator that emits light when excited. This inner vessel is surrounded by layers of shielding and by about 2,000 photomultiplier tubes to detect the light flashes.(Credit: Borexino Collaboration)
via scientificamerican

Quark quartet fuels quantum feud

meson-molecule
MOLECULAR MODEL In the molecular model, quark-antiquark pairs form two color-neutral mesons that become weakly linked as a molecule.
DIQUARK MODEL In the diquark model, the particles form quark-quark and antiquark-antiquark pairs, which are forced to combine to balance their color charges.
DIQUARK MODEL The particles form quark-quark and antiquark-antiquark pairs, which are forced to combine to balance their color charges.
via simonsfoundation

What lit up the universe?

A computer model shows one scenario for how light is spread through the early universe on vast scales (more than 50 million light years across). Astronomers will soon know whether or not these kinds of computer models give an accurate portrayal of light in the real cosmos. (Credit: Andrew Pontzen/Fabio Governato)
A computer model shows one scenario for how light is spread through the early universe on vast scales (more than 50 million light years across). Astronomers will soon know whether or not these kinds of computer models give an accurate portrayal of light in the real cosmos. (Credit: Andrew Pontzen/Fabio Governato)
via phys

What happened to NASA’s Valkyrie Robot at the DRC Trials, and what’s next

via spectrum

Pebble-sized particles may jump-start planet formation

Radio/optical composite of the Orion Molecular Cloud Complex showing the OMC-2/3 star-forming filament. GBT data is shown in orange. Uncommonly large dust grains there may kick-start planet formation. (Credit: S. Schnee, et al.; B. Saxton, B. Kent (NRAO/AUI/NSF)
Radio/optical composite of the Orion Molecular Cloud Complex showing the OMC-2/3 star-forming filament. GBT data is shown in orange. Uncommonly large dust grains there may kick-start planet formation. (Credit: S. Schnee, et al.; B. Saxton, B. Kent (NRAO/AUI/NSF)
via rdmag

Physicists propose superabsorption of light beyond the limits of classical physics

In one potential method to realize superabsorption, a superabsorbing ring absorbs incident photons, giving rise to excitons. (Credit: Higgins, et al.)
In one potential method to realize superabsorption, a superabsorbing ring absorbs incident photons, giving rise to excitons. (Credit: Higgins, et al.)
via phys.org

Physics in the News

Tuesday, August 26, 2014

Pluto bound spacecraft crosses Neptune’s orbit(VIDEO)

via nasa

Mars, August 27, moon hoax is fake

This image sometimes circulates on Facebook, with the claim that Mars will appear as big and bright as a full moon on August 27, 2014. It’s a hoax. Don’t believe it. Mars never appears as large as a full moon in Earth’s sky. (Credit: Unknown)
This image sometimes circulates on Facebook, with the claim that Mars will appear as big and bright as a full moon on August 27, 2014. It’s a hoax. Don’t believe it. Mars never appears as large as a full moon in Earth’s sky. (Credit: Unknown)
via bnlive

Physicists ‘freeze time’ to manipulate spin information in graphene

A optical microscope image of the spintronic device (top view). The top electrode (tg) and cobalt electrodes (1 to 5) are yellow. The boron nitride layers (in green) encapsulate the graphene flake, which is outlined by the dotted line. Credit: Fundamental Research on Matter (Credit: FOM)
via phys.org

Radical new theory could kill the multiverse hypothesis

Alessandro Strumia of the University of Pisa, pictured speaking at a conference in 2013, has co-developed a scale-symmetric theory of particle physics called “agravity.” (Credit: Thomas Lin/Quanta Magazine)
via simonfoundation

New technique for measuring nanostructures

X-ray interference pattern measured while studying complex nano-layer structures. The sketch inserted illustrates the path of the x-ray beam relative to the surface of the sample. (Credit: Sebastian Macke)
X-ray interference pattern measured while studying complex nano-layer structures. The sketch inserted illustrates the path of the x-ray beam relative to the surface of the sample. (Credit: Sebastian Macke)
via rdmag

SpaceX primed to launch second AsiaSat mission in three weeks

Three weeks after launching the AsiaSat-8 communications satellite, SpaceX is primed to deliver its sibling, AsiaSat-6, into geostationary transfer orbit at an altitude of 22,236 miles (35,786 km) on Wednesday, 27 August. (Credit: AsiaSat)
 
via americaspace

Cosmic rays on the sky – where do they come from?

Relative intensity (top row) and pre-trial significance (bottom row) of the cosmic-ray flux in the vicinity of Region A (left), Region B (center), and Region C (right). (Credit: Abeysekara et al)

via astrobites

Imprint of primordial monster star found

The very first stars in the Universe might have been hundreds of times more massive than the Sun. Credit: Artist's impression by National Astronomical Observatory of Japan
The very first stars in the Universe might have been hundreds of times more massive than the Sun. (Credit: National Astronomical Observatory of Japan)
via scientificamerican

Nuclear fusion reactor at the Princeton Plasma Physics Lab will be operational again after $94 M upgrade

Jonathan Menard, a principal research physicist and program director for the National Spherical Torus Experiment (NSTX), and Masa Ono, a principal research physicist and project director of the NSTX, stand in front of the experiment during a tour of the facility. The device has been shut down since 2011 while it undergoes a $94 million upgrade that will make it the most powerful device of its kind in the world
Jonathan Menard, a principal research physicist and program director for the National Spherical Torus Experiment (NSTX), and Masa Ono, a principal research physicist and project director of the NSTX, stand in front of the experiment during a tour of the facility. The device has been shut down since 2011 while it undergoes a $94 million upgrade that will make it the most powerful device of its kind in the world. (Credit NSTX)
via nj.com

Roscosmos intends to spend about $298 million on removing orbital clutter

The agency intends to deploy the spacecraft, codename Liquidator, to clear up the geostationary orbit over the equator, which is 36 thousand kilometers above sea level
The agency intends to deploy the spacecraft, codename Liquidator, to clear up the geostationary orbit over the equator, which is 36 thousand kilometers above sea level. (Credit: Roscosmos)
via spacemart

How the computer of the future keeps its cool

"When you start to make electronics smaller and denser, not only are you making much more heat in the same amount of volume, but it's much harder for the heat to flow outward," says Peter Nalbach, a theoretical physicist at the University of Hamburg, Germany. (Credit: Mehau Kulyk/Getty)
“When you start to make electronics smaller and denser, not only are you making much more heat in the same amount of volume, but it’s much harder for the heat to flow outward,” says Peter Nalbach, a theoretical physicist at the University of Hamburg, Germany. (Credit: Mehau Kulyk/Getty)
via popularmechanics

The plan to build a massive online brain for all the world’s robots

hey hope to create a massive online “brain” that can help all robots navigate and even understand the world around them. “The purpose,” says Saxena, who dreamed it all up, “is to build a very good knowledge graph—or a knowledge base—for robots to use.Thinkstock
Researchers hope to create a massive online “brain” that can help all robots navigate and even understand the world around them. “The purpose,” says Saxena, who dreamed it all up, “is to build a very good knowledge graph—or a knowledge base—for robots to use. (Credit: Thinkstock, Hernandez )
via wired

Physics research removes outcome unpredictability of ultracold atomic reactions

Probability density  of an Efimov trimer state at different three-body geometries that are characterized by the polar angle -- indicated by the trimer legends.  The key feature in the probability density is that unlike ordinary molecular binding that mostly has a single geometry, the Efimov trimer covers have a broad range of geometries. The atoms in such states behave more like in a fluid drop. (Credit: Yujun Wang, Kansas State University)
Probability density of an Efimov trimer state at different three-body geometries that are characterized by the polar angle — indicated by the trimer legends. The key feature in the probability density is that unlike ordinary molecular binding that mostly has a single geometry, the Efimov trimer covers have a broad range of geometries. The atoms in such states behave more like in a fluid drop. (Credit: Yujun Wang, Kansas State University)

via phys.org