if we have a system of qubits all in the same state (with the same probability distributions), we have identical qubits, even though we might get different results upon measuring the individual qubits. Strangely enough, particles in the quantum world can be both identical and distinct at the same time. (Credit: M. Byrne)
This composite X-ray/radio image of Abell 400 shows radio jets (pink), immersed in a vast cloud of multimillion degree X-ray emitting gas (blue) that pervades the cluster. The jets emanate from the vicinity of two supermassive black holes (bright spots in the image) in the galaxy. Chandra and radio data confirm that the unusual structure is due to the merger of two large galaxies, whose supermassive black holes are bound together by their mutual gravity. (Credit: X-Ray: NASA/CXC/D. Hudson, T.Reiprich et al. (AIfA); Radio: NRAO/VLA/ NRL)
via phys
a region of jet activity can be seen at the neck of the comet. These jets, originating from several discrete locations, are a product of ices sublimating and gases escaping from inside the nucleus. (Credit: ESA, NASA)
via phys.org
Researcher will mash together the visual recognition skills of humans and the spatial memory system of rats to enable robots to navigate in any environmental conditions. (Credit: The Australian)
via theaustralian
The image above shows a standard prediction for the dark matter distribution within about 1 million light years of the Milky Way galaxy, which is expected to be swarming with thousands of small dark matter clumps called `halos’. (Credit: Garrison, Kimmel, Bullock, UCI)
via dailygalaxy
There is no doubt in my mind that society invests its billions well if it invests in theoretical physics. Whether that investment should go into particle colliders though is a different question. I don’t have a good answer to that, and I don’t see that the question is seriously being discussed. (Credit: Hossenfelder)
via backreaction
Dust map of the Universe. The region studied by BICEP2 is indicated by the rectangle in the right circle. (Credit: Planck Collaboration)
via universetoday
n this illustration, the artificial atom on the right side of the image sends out sound waves that are picked up by the microphone on the left. (Credit: Philip Krantz)
via livescience
A serious challenge to the discovery of gravity waves by the BICEP2 2014 results has appeared: the researchers had underestimated the amount of interstellar dust that could be contaminating their data. (Credit: MacRobert, Andrei Linde)
via skyandtelescope
Scientists have found definitive traces of water on a relatively small exoplanet. HAT-P-11b is the size of Neptune and four times the size of Earth. The exoplanet has copious amounts of both water vapor and hydrogen in its atmosphere. (Credit: NASA)
via bbc
Our current model of the early inflationary period predicts that the universe should be flat, and so far that has held up. If the universe actually is curved, then the inflationary period must have been more complex than we have thought. (Credit: Koberlien)
via phys.org
Few scientists doubt that Einstein was right. But the mathematics describing the time-dilation effect are “fundamental to all physical theories”, says Thomas Udem, a physicist at the Max Planck Institute for Quantum Optics in Garching, Germany, who was not involved in the research. “It is of utmost importance to verify it with the best possible accuracy.” (Credit: A. Witze, Martin Poole/Getty)
via nature
Graphic representation of a seaborgium hexacarbonyl molecule on the silicon dioxide covered detectors of a COMPACT detector array. (Credit: Alexander Yakushev (GSI) / Christoph E. Düllmann)
via newscientist
A transmission electron microscopic image of titanium dioxide plates resting on a near-invisible sheet of graphene. (Credit: Rozhkova et. al.)
via anl.gov
There have been recent near misses – an explosion over Russia, a mysterious crater in Nicaragua. But what would we do in the event of an actual meteor strike? A simulated meteor strike at a training facility in Texas. (Credit: Nick Ballon)
via theguardian
ITTY BITTY LIVING SPACE The tiny galaxy M60-UCD1 (circled in white) harbors a black hole with the mass of around 21 million suns. M60-UCD1 may be a remnant of a larger galaxy torn apart by the massive galaxy M60 (center), which is also pulling in a nearby spiral galaxy (upper right). (Credit: NASA, ESA)
via sciencenews
The illustration shows how oscillating photons create an image of frozen light. At first, photons in the experiment flow easily between two superconducting sites, producing the large waves shown at left. After a time, the scientists cause the light to ‘freeze,’ trapping the photons in place. Fast oscillations on the right of the image are evidence of the new trapped behavior. (Credit: James Raftery et al.)
via princeton
Pakistan is a signing ceremony away from becoming the associate member of the European Organisation for Nuclear Research. Above photo is CERN Labs on the Swiss-French border. (Credit: CERN)
via dawn
The quasicrystals formed 4.5 billion years ago in a violent collision between two rocks, among the asteroids that coalesced into planets. The rock with the quasicrystals landed in Chukotka as a meteorite. “They’re part of the primal stuff that formed our solar system,” Dr. Steinhardt said. The above is A penteract (5-cube) pattern using 5D orthographic projection to 2D using Petrie polygon basis vectors overlaid on the diffractogram from an Icosahedral Ho-Mg-Zn quasicrystal. (Credit: NYTimes)
via nytimes
When space probes, such as Rosetta and Cassini, fly over certain planets and moons, in order to gain momentum and travel long distances, their speed changes slightly for an unknown reason. A researcher has now analyzed whether or not a hypothetical gravitomagnetic field could have an influence. However, other factors such as solar radiation, tides, or even relativistic effects or dark matter could be behind this mystery. An artist’s rendition of Rosetta probe during a flyby. (Credit: ESA/C.Carreau)
via sciencedaily
The starboard truss of the International Space Station while Space Shuttle Endeavour docked with the station. The newly installed Alpha Magnetic Spectrometer (AMS) is visible at center left. (Credit: NASA)
via mit
The dome of the Blanco Telescope, which houses DECam, the 570-megapixel CCD camera used for the Dark Energy Survey, at the Cerro Tololo Inter-American Observatory in Chile. (Credit: Reidar Hahn)
via simonsfoundation
Mosaic of southern hemisphere of Miranda, the innermost regular satellite of Uranus, with radius of 236 km. Projection is orthographic, centered on the south pole. Visible from left to right are Elsinore, Inverness, and Arden coronae. (Credit: NASA/Jet Propulsion Laboratory/Ted Stryk)
via science2.0
An international team of physicists has shown that the mass ratio between protons and electrons is the same in weak and in very strong gravitational fields. Pictured above is the laser system with which the hydrogen molecules were investigated on earth. (Credit: LaserLaB VU University Amsterdam/Wim Ubachs)
via phys.org
The MIT BioSuit, a skintight spacesuit that offers improved mobility and reduced mass compared to modern gas-pressurized spacesuits. (Credit: Jose-Luis Olivares/MIT)
via mit
Upper plot shows the slope of positron fraction measured by AMS (red circles) and a straight line fit at the highest energies (blue line). The data show that at 275±32 GeV the slope crosses zero. Lower plot shows the measured positron fraction as function of energy as well as the location of the maximum. (Credit CERN)
via interactions
An organic light-emitting diode, or OLED, glows orange when electrical current flows through it. It is a step toward ‘spintronic’ devices such as faster computers, better data storage and more efficient OLEDs for TV, computer and cell phone displays. (Credit: Andy Brimhall, University of Utah)
via phys.org
This revolutionary work could open up new real estate in the phone by embedding the glass with layer upon layer of sensors, including ones that could take your temperature, assess your blood sugar levels if you’re diabetic or even analyze DNA. (Credit: Jerome Lapointe, Mathieu Gagné, Ming-Jun Li, and Raman Kashyap)
via mediacastermagazine
The NASA/ESA Hubble Space Telescope has produced this finely detailed image of the beautiful spiral galaxy NGC 6384. This galaxy lies in the constellation of Ophiuchus (The Serpent Bearer), not far from the centre of the Milky Way on the sky. The positioning of NGC 6384 means that we have to peer at it past many dazzling foreground Milky Way stars that are scattered across this image. (Credit NASA/ESA)
via nationalgeographic
he problem was first identified some time ago. Dubbed the “cosmological lithium discrepancy,” the issue is very simple: everything we know about the Big Bang, supernovae, and the dynamics of stars, tells us that we should find a very specific concentration of lithium in the universe at large — but the universe actually seems to contain far less than that amount. (Credit: NASA, HUbble)
European Space Agency’s Giotto probe returned 2333 images during the Comet Halley encounter of March 13-14, 1986. All were recorded before the closest approach of 596 km at 00:03:02 UTC on 14 March 1986; the last from a distance of 1180 km, 15 seconds before closest approach. (Credit: MPAE, Dr H.U. Keller.
An Atlas V rocket lifts off with the mysterious CLIO satellite. The rocket was carrying a satellite known only as CLIO, which it delivered into an unidentified (though probably geosynchronous) orbit. (Credit: ULA)
via forbes
Random number generator setup: a camera is fully and homogeneously illuminated by a LED. The raw binary representation of pixel values are concatenated and passed through a randomness extractor. This extractor outputs quantum random numbers. (Credit: arXiv:1405.0435 [quant-ph])
Science says the universe could be a hologram, a computer program, a black hole or a bubble—and there are ways to check. (Credit: NASA, ESA, SAO, CXC, JPL-Caltech, and STScI)
via smithsonianmag