Dark matter interacts with itself and everything else even less than previously thought

Astronomers have found that dark matter does not slow down when colliding with each other.

hs-2015-10-a-web_print
Using visible-light images from Hubble, the team was able to map the post-collision distribution of stars and also of the dark matter (colored in blue), which was traced through its gravitational lensing effects on background light. Chandra was used to see the X-ray emission from impacted gas (pink).(Credit: NASA, ESA, STScI, and CXC)

Researchers say this finding narrows down the options for what this mysterious substance might be.  Because dark matter does not reflect, absorb, or emit light, it can only be traced indirectly, such as by measuring how it warps space through gravitational lensing.

This collage shows images of six different galaxy clusters taken with NASA's Hubble Space Telescope. The clusters were observed in a study of how dark matter in clusters of galaxies behaves when the clusters collide. Seventy-two large cluster collisions were studied in total. Using visible-light images from Hubble, the team was able to map the post-collision distribution of stars and also of the dark matter (colored in blue), which was traced through its gravitational lensing effects on background light. The team determined that dark matter interacts with itself less than previously thought. The clusters shown here are, from left to right and top to bottom: MACS J0416.1-2403, MACS J0152.5-2852, MACS J0717.5+3745, Abell 370, Abell 2744, and ZwCl 1358+62. Image Type: Astronomical/Annotated Credit: NASA, ESA, D. Harvey (École Polytechnique Fédérale de Lausanne, Switzerland; University of Edinburgh, UK), R. Massey (Durham University, UK), T. Kitching (University College London, UK), and A. Taylor and E. Tittley (University of Edinburgh, UK)
This collage shows images of six different galaxy clusters taken with NASA’s Hubble Space Telescope. The clusters were observed in a study of how dark matter in clusters of galaxies behaves when the clusters collide. Seventy-two large cluster collisions were studied in total. (Credit: NASA, ESA, D. Harvey (École Polytechnique Fédérale de Lausanne, Switzerland; R. Massey, T. Kitching, and A. Taylor and E. Tittley.)

NASA’s Hubble Space Telescope and Chandra X-ray Observatory were used to study how dark matter in clusters of galaxies behaves when the clusters collide. Hubble was used to map the post-collision distribution of stars and dark matter, which was traced through its gravitational lensing effects on background light. Chandra was used to see the X-ray emission from the colliding gas. The results will be published in the journal Science on March 27.

“Dark matter is an enigma we have long sought to unravel,” said John Grunsfeld, assistant administrator of NASA’s Science Mission Directorate in Washington. “With the combined capabilities of these great observatories, both in extended mission, we are ever closer to understanding this cosmic phenomenon.”

John Grunsfeld, assistant administrator of NASA’s Science Mission Directorate in Washington.
John Grunsfeld, assistant administrator of NASA’s Science Mission Directorate in Washington, during STS-109 March 4, 2002.(Credit: NASA)

To learn more about dark matter, researchers can study it in a way similar to experiments on visible matter — by watching what happens when it bumps into celestial objects. An excellent natural laboratory for this analysis can be found in collisions between galaxy clusters.

Galaxy clusters are made of three main ingredients: galaxies, clouds of gas, and dark matter. During collisions, the clouds of gas enveloping the galaxies crash into each other and slow down or stop. The galaxies are much less affected by the drag from the gas and, because of the huge gaps between the stars within them, do not have a slowing effect on each other.

“We know how gas and galaxies react to these cosmic crashes and where they emerge from the wreckage. Comparing how dark matter behaves can help us to narrow down what it actually is,” explained David Harvey of the École Polytechnique Fédérale de Lausanne, Switzerland, lead author of the new study.

Harvey and his team used data from Hubble and Chandra to study 72 large cluster collisions. The collisions happened at different times, and are seen from different angles — some from the side, and others head-on.

The team found that, like the galaxies, the dark matter continued straight through the violent collisions without slowing down relative to the galaxies. Because galaxies pass through unimpeded, if astronomers observe a separation between the distribution of the galaxies and the dark matter then they know it has slowed down. If the dark matter does slow, it will drag and lie somewhere between the galaxies and the gas, which tells researchers how much it has interacted.

The leading theory is that dark matter particles spread throughout the galaxy clusters do not frequently bump into each other. The reason the dark matter doesn’t slow down is because not only does it not interact with visible particles, it also infrequently interacts with other dark matter. The team has measured this “self-interaction” and found it occurs even less frequently than previously thought.

“A previous study had seen similar behavior in the Bullet Cluster,” said team member Richard Massey of Durham University, U.K. “But it’s difficult to interpret what you’re seeing if you have just one example. Each collision takes hundreds of millions of years, so in a human lifetime we only get to see one freeze-frame from a single camera angle. Now that we have studied so many more collisions, we can start to piece together the full movie and better understand what is going on.”

This is a NASA/ESA Hubble Space Telescope image of the galaxy cluster Abell 370. Shown in blue on the image is a map of the dark matter found within the cluster. (Credit NASA, ESA)
This is a NASA/ESA Hubble Space Telescope image of the galaxy cluster Abell 370. Shown in blue on the image is a map of the dark matter found within the cluster. (Credit NASA, ESA)

“It is unclear how much we expect dark matter to interact with itself because dark matter is already going against everything we know, said Harvey. “We know from previous observations that it must interact with itself reasonably weakly, however this study has now placed it below that of two protons interacting with one another — which is one theory for dark matter.” Harvey said that the results suggest that dark matter is unlikely to be only a kind of dark proton. If dark matter scattered like protons do with one another (electrostatically) it would have been detected. “This challenges the idea that there exists ‘dark photons,’ the dark matter equivalent of photons,” he said.

Dark matter could potentially have rich and complex properties, and there are still several other types of interactions to study. These latest results rule out interactions that create a strong frictional force, causing dark matter to slow down during collisions. Other possible interactions could make dark matter particles bounce off each other like billiard balls, causing dark matter particles to be ejected from the clouds by collisions or for dark matter blobs to change shape. The team will be studying these next.

To further increase the number of collisions that can be studied, the team is also looking to study collisions involving individual galaxies, which are much more common.

“There are still several viable candidates for dark matter, so the game is not over, but we are getting nearer to an answer,” concludes Harvey. “These ‘astronomically large’ particle colliders are finally letting us glimpse the dark world all around us but just out of reach.”

Credit: Hubblesite.org

Have Experimentalists Discovered Dark Matter?

3D map of the large-scale distribution of dark matter, reconstructed from measurements of weak gravitational lensing with the Hubble Space Telescope (Credit: Wikipedia)
3D map of the large-scale distribution of dark matter, reconstructed from measurements of weak gravitational lensing with the Hubble Space Telescope (Credit: Wikipedia)

Scientists have long known that dark matter is out there, silently orchestrating the universe’s movement and structure. But what exactly is dark matter made of? And what does a dark matter particle look like? That remains a mystery, with experiment after experiment coming up empty handed in the quest to detect these elusive particles.

The Bullet Cluster: HST image with overlays. The total projected mass distribution reconstructed from strong and weak gravitational lensing is shown in blue, while the X-ray emitting hot gas observed with Chandra is shown in red. (Credit: Wikipedia)
The Bullet Cluster: HST image with overlays. The total projected mass distribution reconstructed from strong and weak gravitational lensing is shown in blue, while the X-ray emitting hot gas observed with Chandra is shown in red. (Credit: Wikipedia)

With some luck, that may be about to change. With ten times the sensitivity of previous detectors, three recently funded dark matter experiments have scientists crossing their fingers that they may finally glimpse these long-sought particles. In recent conversations with The Kavli Foundation, scientists working on these new experiments expressed hope that they would catch dark matter, but also agreed that, in the end, their success or failure is up to nature to decide.

Read the Transcript: Kavil Foundation Dark Matter Transcript

“Nature is being coy,” said Enectali Figueroa-Feliciano, an associate professor of physics at the MIT Kavli Institute for Astrophysics and Space Research who works on one of the three new experiments. “There’s something we just don’t understand about the internal structure of how the universe works. When theorists write down all the ways dark matter might interact with our particles, they find, for the simplest models, that we should have seen it already. So even though we haven’t found it yet, there’s a message there, one that we’re trying to decode now.”

Dark matter particles known as axions streaming from the sun, converting in Earth’s magnetic field (red) to x-rays, which are detected by the XMM-Newton observatory. (Credit: University of Leicester)
Dark matter particles known as axions streaming from the sun, converting in Earth’s magnetic field (red) to x-rays, which are detected by the XMM-Newton observatory. (Credit: University of Leicester)

The first of the new experiments, called the Axion Dark Matter eXperiment, searches for a theoretical type of dark matter particle called the axion. ADMX seeks evidence of this extremely lightweight particle converting into a photon in the experiment’s high magnetic field. By slowly varying the magnetic field, the detector hunts for one axion mass at a time.

“We’ve demonstrated that we have the tools necessary to see axions,” said Gray Rybka, research assistant professor of physics at the University of Washington who co-leads the ADMX Gen 2 experiment. “With Gen2, we’re buying a very, very powerful refrigerator that will arrive very shortly. Once it arrives, we’ll be able to scan very, very quickly and we feel we’ll have a much better chance of finding axions – if they’re out there.”

According to supersymmetry, dark-matter particles known as neutralinos (aka WIMPs) annihilate each other, creating a cascade of particles and radiation. (Credit: Sky & Telescope / Gregg Dinderman)
According to supersymmetry, dark-matter particles known as neutralinos (aka WIMPs) annihilate each other, creating a cascade of particles and radiation. (Credit: Sky & Telescope / Gregg Dinderman)

The two other new experiments look for a different type of theoretical dark matter called the WIMP. Short for Weakly Interacting Massive Particle, the WIMP interacts with our world very weakly and very rarely. The Large Underground Xenon, or LUX, experiment, which began in 2009, is now getting an upgrade to increase its sensitivity to heavier WIMPs. Meanwhile, the Super Cryogenic Dark Matter Search collaboration, which has looked for the signal of a lightweight WIMP barreling through its detector since 2013, is in the process of finalizing the design for a new experiment to be located in Canada.

“In a way it’s like looking for gold,” said Figueroa-Feliciano, a member of the SuperCDMS experiment. “Harry has his pan and he’s looking for gold in a deep pond, and we’re looking in a slightly shallower pond, and Gray’s a little upstream, looking in his own spot. We don’t know who’s going to find gold because we don’t know where it is.”

Astronomers use the idea of dark matter to account for a substantial portion of the mass of our universe. An even greater amount of mass, they believe, is taken up with dark energy. Meanwhile, the visible stars and galaxies we see around us in space may be only a small part of the whole universe. (Credit: Wikimedia Commons.)
Astronomers use the idea of dark matter to account for a substantial portion of the mass of our universe. An even greater amount of mass, they believe, is taken up with dark energy. Meanwhile, the visible stars and galaxies we see around us in space may be only a small part of the whole universe. (Credit: Wikimedia Commons.)

Rybka agreed, but added the more optimistic perspective that it’s also possible that all three experiments will find dark matter. “There’s nothing that would require dark matter to be made of just one type of particle except us hoping that it’s that simple,” he said. “Dark matter could be one-third axions, one-third heavy WIMPs and one-third light WIMPs. That would be perfectly allowable from everything we’ve seen.”

Yet the nugget of gold for which all three experiments search is a very valuable one. And even though the search is difficult, all three scientists agreed that it’s worthwhile because glimpsing dark matter would reveal insight into a large portion of the universe.

"Cold Dark Matter: An Exploded View" Art Print by Cornelia Parker.  An artistic interpretation of Dark Matter. (Credit: Cornelia Parker)
“Cold Dark Matter: An Exploded View” Art Print by Cornelia Parker. An artistic interpretation of Dark Matter. (Credit: Cornelia Parker)

“We’re all looking and somewhere, maybe even now, there’s a little bit of data that will cause someone to have an ‘Ah ha!’ moment,” said Harry Nelson, professor of physics at the University of California, Santa Barbara and science lead for the LUX upgrade, called LUX-ZEPLIN. “This idea that there’s something out there that we can’t sense yet is one of those things that sends chills down my spine.”

Via: Kavi Institute

 

 

 

Physics in the News

Wednesday, October 8, 2014

NuSTAR telescope discovers shockingly bright dead star

Astronomers have found a pulsating dead star beaming with the energy of about 10 million Suns, which is the brightest pulsar ever recorded..  A rare and mighty pulsar (pink) can be seen at the center of galaxy M82 in this new multi-wavelength portrait. NASA's NuSTAR mission discovered the "pulse" of the pulsar — a type of dead star — using is high-energy X-ray vision.
Astronomers have found a pulsating dead star beaming with the energy of about 10 million Suns, which is the brightest pulsar ever recorded.. A rare and mighty pulsar (pink) can be seen at the center of galaxy M82 in this new multi-wavelength portrait. NASA’s NuSTAR mission discovered the “pulse” of the pulsar — a type of dead star — using is high-energy X-ray vision.
via astronomy

Hypothetical new cosmological model known as Higgsogenesis (PDF)

The term Higgsogenesis refers to the first appearance of Higgs particles in the early universe, just as baryogenesis refers to the appearance of baryons (protons and neutrons) in the early moments after the big bang. While baryogenesis is a fairly well understood process, Higgsogenesis is still very hypothetical. (Credit: CERN/Lucas Taylor, Koberlein)
The term Higgsogenesis refers to the first appearance of Higgs particles in the early universe, just as baryogenesis refers to the appearance of baryons (protons and neutrons) in the early moments after the big bang. While baryogenesis is a fairly well understood process, Higgsogenesis is still very hypothetical. (Credit: CERN/Lucas Taylor, Koberlein)
via phys.org

Dark matter half what we thought, say scientists (PDF)

A new measurement of dark matter in the Milky Way has revealed there is half as much of the mysterious substance as previously thought.  The above is an artist's impression of the Milky Way and its dark matter halo (shown in blue, but in reality invisible). Credit: ESO/L. Calçada
A new measurement of dark matter in the Milky Way has revealed there is half as much of the mysterious substance as previously thought. The above is an artist’s impression of the Milky Way and its dark matter halo (shown in blue, but in reality invisible). (Credit: ESO/L. Calçada)
via sciencedaily

Astronomers see right into heart of exploding star

 (Credit: Bill Saxton, NRAO/AUI/NSF)
An international team of astronomers has been able to see into the heart of an exploding star, by combining data from telescopes that are hundreds or even thousands of kilometres apart. (Credit: Bill Saxton, NRAO/AUI/NSF)
via manchester

Among the artian hills: Curiosity Rover peers at rocks of Mount Sharp

After a couple of years of racing towards Mount Sharp (Aeolis Mons), now it’s time for the Curiosity rover to get a better look at its Martian surroundings. Rover tracks and Martian sand as seen from the rear hazcam of NASA’s Curiosity rover. (Credit: NASA/JPL-Caltech)
After a couple of years of racing towards Mount Sharp (Aeolis Mons), now it’s time for the Curiosity rover to get a better look at its Martian surroundings. Rover tracks and Martian sand as seen from the rear hazcam of NASA’s Curiosity rover. (Credit: NASA/JPL-Caltech)
via universetoday

Two new strange and charming particles appear at LHC

Two new particles have been discovered by the LHCb experiment at CERN's Large Hadron Collider near Geneva, Switzerland. One of them has a combination of properties that has never been observed before. : Dave Stock)
Two new particles have been discovered by the LHCb experiment at CERN’s Large Hadron Collider near Geneva, Switzerland. One of them has a combination of properties that has never been observed before. (Credit: Dave Stock)
via newscientist

 The cosmic signal that might have changed human civilization

The image above shows a graphic which was produced by the SETI from the data of the Wow signal. A signal (Gaussian, triplet or pulse) arises only in a single narrowband channel. All other channels contain noise. Up to now we do not know cosmic phenomena which would generate such signals. It would seem improbable that they have no artificial origin. The picture shows a computer generated example of a strong Gaussian signal.
The image above shows a graphic which was produced by the SETI from the data of the Wow signal. A signal (Gaussian, triplet or pulse) arises only in a single narrowband channel. All other channels contain noise. Up to now we do not know cosmic phenomena which would generate such signals. It would seem improbable that they have no artificial origin. The picture shows a computer generated example of a strong Gaussian signal.
via dailygalaxy

World’s longest neutrino beam will explore why the universe still exists

This quirk of subatomics could have huge implications for our understanding of the universe, specifically how the current inequality between matter and antimatter came to be. Answering that could, in turn, provide a better insight as to why reality did not simply blink out of existence immediately after the Big Bang as a universe's worth of matter and antimatter negated one another's existences (
This quirk of subatomics could have huge implications for our understanding of the universe, specifically how the current inequality between matter and antimatter came to be. Answering that could, in turn, provide a better insight as to why reality did not simply blink out of existence immediately after the Big Bang as a universe’s worth of matter and antimatter negated one another’s existences (Credit: Tarantola, Fermilab, )
via gizmodo

What a difference a  neutron makes

For the first time, scientists have demonstrated that modified hydrogen bonding is sufficient to switch solid-state electronic properties. (Credit: University of Tokyo. ,Tan)
For the first time, scientists have demonstrated that modified hydrogen bonding is sufficient to switch solid-state electronic properties. (Credit: University of Tokyo. ,Tan)
via asianscientist

 

Physics in the News

Tuesday, September 9, 2014

Cold dark matter may have kept our Milky Way all alone in its corner of the Universe

Two models of the dark matter distribution in the halo of a galaxy like the Milky Way, separated by the white line are shown. The colors represent the density of dark matter, with red indicating high-density and blue indicating low-density. On the left is a simulation of how non-interacting cold dark matter produces an abundance of smaller satellite galaxies. On the right the simulation shows the situation when the interaction of dark matter with other particles reduces the number of satellite galaxies we expect to observe around the Milky Way. (Credit: Durham University)
Two models of the dark matter distribution in the halo of a galaxy like the Milky Way, separated by the white line are shown. The colors represent the density of dark matter, with red indicating high-density and blue indicating low-density. On the left is a simulation of how non-interacting cold dark matter produces an abundance of smaller satellite galaxies. On the right the simulation shows the situation when the interaction of dark matter with other particles reduces the number of satellite galaxies we expect to observe around the Milky Way. (Credit: Durham University)
via forbes

Saturn Ring rapidly creates and destroys its moonlets

Cassini spied just as many regular, faint clumps in Saturn's narrow F ring (the outermost, thin ring), like those pictured here, as Voyager did. But it saw hardly any of the long, bright clumps that were common in Voyager images. (Credit: NASA/JPL-Caltech/SSI)
Cassini spied just as many regular, faint clumps in Saturn’s narrow F ring (the outermost, thin ring), like those pictured here, as Voyager did. But it saw hardly any of the long, bright clumps that were common in Voyager images. (Credit: NASA/JPL-Caltech/SSI)
via discovery

‘Solid’ light could compute previously unsolvable problems

Oscillations of photons create an image of frozen light. At first, photons in the experiment flow easily between two superconducting sites, producing the large waves shown at left. After a time, the scientists cause the light to "freeze," trapping the photons in place. Fast oscillations on the right of the image are evidence of the new trapped behavior. (Credit: Princeton University)
Oscillations of photons create an image of frozen light. At first, photons in the experiment flow easily between two superconducting sites, producing the large waves shown at left. After a time, the scientists cause the light to “freeze,” trapping the photons in place. Fast oscillations on the right of the image are evidence of the new trapped behavior. (Credit: Princeton University)
via phys.org

Squeezed quantum communication

 Erlangen-based physicists have sent bright pulses in sensitive quantum states through the window of a technical services room on the roof of the Max Planck Institute for the Science of Light to a building of the University Erlangen-Nürnberg. These types of light flashes are easy to receive even when the sun is shining brightly, unlike the signals of individual photons used to date. (Credit: MPI for the Science of Light)

Erlangen-based physicists have sent bright pulses in sensitive quantum states through the window of a technical services room on the roof of the Max Planck Institute for the Science of Light to a building of the University Erlangen-Nürnberg. These types of light flashes are easy to receive even when the sun is shining brightly, unlike the signals of individual photons used to date. (Credit: MPI for the Science of Light)
via sciencecodex

Holography entangles quantum physics with gravity

The gravity of a black hole swallows the matter around it. The link between tensor networks and quantum entanglement may prove useful in studying the physics of black holes, some physicists propose. (Credit: )
The gravity of a black hole swallows the matter around it. The link between tensor networks and quantum entanglement may prove useful in studying the physics of black holes, some physicists propose. (Credit: M. Weiss, Chandra X -ray Center/NASA)
via sciencenews

Scientists at Harvard crush, freeze and light their ‘soft’ robot on fire and it still wriggles away

via rdmag

Buckyballs, diamonds inspire new synthetic molecule

Square, cage-shaped molecules called diamondoids (left) linked to soccer-ball shaped buckyballs (right) create a new molecule called a buckydiamondoid, center, in this illustration. These new hybrid molecules may be useful for developing molecular electronic devices in the future.
Square, cage-shaped molecules called diamondoids (left) linked to soccer-ball shaped buckyballs (right) create a new molecule called a buckydiamondoid, center, in this illustration. These new hybrid molecules may be useful for developing molecular electronic devices in the future. (Credit: Manoharan Lab/Stanford University)
via sciencenews

This animation perfectly explains gravitational lensing

via geek

Artificial cells created that change shape and move on their own

via singularityhub

When machines outsmart humans

 Machines have surpassed humans in physical strength, speed and stamina. What if they surpassed human intellect as well? Science fiction movies have explored this question. In the classic "2001: A Space Odyssey," astronaut David Bowman, played by Keir Dullea, struggles for control of the spacecraft against the sentient computer HAL 9000.
Machines have surpassed humans in physical strength, speed and stamina. What if they surpassed human intellect as well? Science fiction movies have explored this question. In the classic “2001: A Space Odyssey,” astronaut David Bowman, played by Keir Dullea, struggles for control of the spacecraft against the sentient computer HAL 9000.
via cnn

Physics in the News

Monday, August 25, 2014

Galileo satellites go into wrong, lower orbit(VIDEO)

via bbc

Nobel prize winner: Let’s find dark matter and dark energy

This picture shows ALMA antennas pointing towards the centre of the milky-way. (Photo: ESO, B. Tafreshi)
Dark matter and dark energy continue to be cosmological conundrum for physicists worldwide. Nobel prize winner Brian Schmidt offers his perspective in an interview. The image shown here is of the ALMA antennas and the constellations of Carina (The Keel) and Vela (The Sails). The dark, wispy dust clouds of the Milky Way streak from middle top left to middle bottom right. (Credit: ESO, B. Tafreshi)
via sciencenordic

Pluto and the other dwarf planets could have astrobiological potential

“Our model predicts different fracture patterns on the surface of Charon depending on the thickness of its surface ice, the structure of the moon’s interior and how easily it deforms, and how its orbit evolved,” said Alyssa Rhoden of NASA’s Goddard Space Flight Center. (Credit: NASA)
via dailygalaxy

Soft infrastructure challenges to scientific knowledge discovery

Open network environments have become essential in the sciences, enabling accelerated discovery and communication of knowledge. Yet, the real revolution began when open community databases allowed researchers to build on existing contributions and compare their results to established knowledge. (Credit: King, Uhlir)
via acm

Physicists attempt quantum clean-up experiment to right old error

Indian physicists propose a tabletop experiment that will provide scientists their first opportunity to measure the probability that particles can move through slits in a twisted path, depicted by the purple ray. (Credit: Aninda Sinha and Urbasi Sinha)
via telegraphindia

Vision correcting displays could spell the end of wearing glasses

via crazyengineers

World’s largest laser compresses diamond to pressures of 50 million Earth atmospheres

Physicists in the US have compressed a synthetic diamond to pressures of 50 million Earth atmospheres to recreate conditions in the cores of giant planets. (Credit: National Ignition Facility)
Physicists in the US have compressed a synthetic diamond to pressures of 50 million Earth atmospheres to recreate conditions in the cores of giant planets. (Credit: National Ignition Facility)
via sciencealert

An interesting glimpse into how future state of the art electronics might work

. A novel class of electronic materials – the so-called transition-metal oxides – hold promise for exciting, new applications. Where layers of this novel class of electronic materials touch, often a unique, and unprecedented phenomenon occurs: for instance, the interface between two insulators can become superconducting, or a strong magnetic order can build up between two non-magnetic layers.
. A novel class of electronic materials – the so-called transition-metal oxides – hold promise for exciting, new applications. Where layers of this novel class of electronic materials touch, often a unique, and unprecedented phenomenon occurs: for instance, the interface between two insulators can become superconducting, or a strong magnetic order can build up between two non-magnetic layers.
via phys.org