Agravity, short for ‘adimensional gravity’, is one of the most recent Theory of Everything proposals in a long line of such proposals that have come about ever since the problem of reconciling Gravity with the Standard Model was realized by physicists. It attempts to merge gravity with the Higgs interaction, and thus the rest of the Standard Model, by reconciling the huge difference between the Planck Scale and the relatively small masses of all the other particles. (Credit: SGTW, Daniels)
The decision to reformat Opportunity’s flash memory early next month is prompted by the multiple computer resets the rover has been experiencing. This month alone, Opportunity has had to be rebooted a dozen times, interrupting valuable time that should be taken up with carrying out science near the rim of Endeavour crater. (Credit: NASA, O’Neil)
“It’s fascinating that the early universe could make galaxies in this way and the modern universe just can’t anymore, and we’re really beginning to understand in a profound way how different the early universe was than it is now,” said Erica Nelson of Yale University. (Credit: Neslson)
via washingtonpost
NASA’s Van Allen Probes orbit through two giant radiation belts surrounding Earth. Their observations help explain how particles in the belts can be sped up to nearly the speed of light. Image (Credit: NASA)
This is a scanning electron microscope image of an interplanetary dust particle that has roughly chondritic elemental composition and is highly rough (chondritic porous: “CP”). CP types are usually aggregates of large numbers of sub-micrometer grains, clustered in a random open order. (Credit: Donald E. Brownlee)
via phys.org
Inflation explains the origin of the large-scale structure of the cosmos. Many physicists believe that inflation explains why the Universe appears to be the same in all directions (isotropic), why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed. (Credit: NASA)
via science20
Engineers just completed hot-fire testing with two 3-D printed rocket injectors. Certain features of the rocket components were designed to increase rocket engine performance. The injector mixed liquid oxygen and gaseous hydrogen together, which combusted at temperatures over 6,000 degrees Fahrenheit, producing more than 20,000 pounds of thrust. (Credit: NASA photo/David Olive)
via spacefellowship
This image shows observations of a newly discovered galaxy core dubbed GOODS-N-774, taken by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys. The core is marked by the box inset, overlaid on a section of the Hubble GOODS-N, or GOODS North, field (Great Observatories Origins Deep Survey). (Credit: NASA, ESA)
via phys.org
The moment of detonation of a Type 1a supernova is modeled. This situation arises when a white dwarf star has accreted mass from a binary partner to a point when gravitational forces overcome the outward electron degeneracy pressure. The star collapses and it is thought that carbon fusion is initiated in the core, creating a supernova. (Credit: Argonne National Laboratory)
White Dwarf No More – The Type 1a supernova proceeds in the simulation, ripping through the white dwarf star. The star is completely destroyed. Around 1-2 × 1044 Joules of energy is released from Type 1a supernovae, ejecting matter and shock waves traveling at velocities of 3-12,000 miles per second (approximately 2-7% the speed of light). (Credit: Argonne National Laboratory)
Complex Fluid Mechanics – Detailed visualizations of the nuclear combustion inside a supernova. The calculations are based on fluid mechanics, showing how the explosion rips through the star. (Credit: Argonne National Laboratory)
Cosmic rays can help scientists do something no one else can: safely image the interior of the nuclear reactors at the Fukushima Daiichi plant. In the Los Alamos National Laboratory, postdoc Elena Guardincerri, right, and undergraduate research assistant, Shelby Fellows, prepare a lead hemisphere inside a muon tomography machine. (Credit: Los Alamos National Laboratory, Tuttle)
via symmetrymagazine
This artist’s impression shows a possible mechanism for a Type Ia supernova. Astronomers have shown that dead stars known as white dwarfs can re-ignite and explode as supernovas. (Credit: NASA)via bbc
llustration of data from the Spitzer Space Telescope, showing the massive increase in dust around the star NGC 2547-ID8, thought to be the result of an asteroid collision. Image (Credit: NASA/JPL-Caltech/University of Arizona)
via americaspace
A plot showing a spin up, spin down, and the resulting spin polarized population of electrons. Inside a spin injector, the polarization is constant, while outside the injector, the polarization decays exponentially to zero as the spin up and down populations go to equilibrium. (Credit SA3.0)
via phys.org
“This is a long-standing, really neat experimental idea,” says Paul Lett, of the National Institute of Standards and Technology in GaithersburgLett, “Now we have to see whether or not it will lead to something practical, or will remain just a clever demonstration of quantum mechanics.”(CreditBarreto-Lemos, Vergano)
via nationalgeographic
The Borexino neutrino detector uses a sphere filled with liquid scintillator that emits light when excited. This inner vessel is surrounded by layers of shielding and by about 2,000 photomultiplier tubes to detect the light flashes.(Credit: Borexino Collaboration)
via scientificamerican
MOLECULAR MODEL In the molecular model, quark-antiquark pairs form two color-neutral mesons that become weakly linked as a molecule.DIQUARK MODEL The particles form quark-quark and antiquark-antiquark pairs, which are forced to combine to balance their color charges.
via simonsfoundation
A computer model shows one scenario for how light is spread through the early universe on vast scales (more than 50 million light years across). Astronomers will soon know whether or not these kinds of computer models give an accurate portrayal of light in the real cosmos. (Credit: Andrew Pontzen/Fabio Governato)
via phys
Radio/optical composite of the Orion Molecular Cloud Complex showing the OMC-2/3 star-forming filament. GBT data is shown in orange. Uncommonly large dust grains there may kick-start planet formation. (Credit: S. Schnee, et al.; B. Saxton, B. Kent (NRAO/AUI/NSF)
via rdmag
In one potential method to realize superabsorption, a superabsorbing ring absorbs incident photons, giving rise to excitons. (Credit: Higgins, et al.)
via phys.org
Dark matter and dark energy continue to be cosmological conundrum for physicists worldwide. Nobel prize winner Brian Schmidt offers his perspective in an interview. The image shown here is of the ALMA antennas and the constellations of Carina (The Keel) and Vela (The Sails). The dark, wispy dust clouds of the Milky Way streak from middle top left to middle bottom right. (Credit: ESO, B. Tafreshi)
via sciencenordic
“Our model predicts different fracture patterns on the surface of Charon depending on the thickness of its surface ice, the structure of the moon’s interior and how easily it deforms, and how its orbit evolved,” said Alyssa Rhoden of NASA’s Goddard Space Flight Center. (Credit: NASA)
via dailygalaxy
Open network environments have become essential in the sciences, enabling accelerated discovery and communication of knowledge. Yet, the real revolution began when open community databases allowed researchers to build on existing contributions and compare their results to established knowledge. (Credit: King, Uhlir)
via acm
Indian physicists propose a tabletop experiment that will provide scientists their first opportunity to measure the probability that particles can move through slits in a twisted path, depicted by the purple ray. (Credit: Aninda Sinha and Urbasi Sinha)
via telegraphindia
Physicists in the US have compressed a synthetic diamond to pressures of 50 million Earth atmospheres to recreate conditions in the cores of giant planets. (Credit: National Ignition Facility)
via sciencealert
. A novel class of electronic materials – the so-called transition-metal oxides – hold promise for exciting, new applications. Where layers of this novel class of electronic materials touch, often a unique, and unprecedented phenomenon occurs: for instance, the interface between two insulators can become superconducting, or a strong magnetic order can build up between two non-magnetic layers.
via phys.org
Novae typically originate in binary systems containing Sun-like stars, as shown in this artist’s rendering. NASA’s Fermi Space Telescope discovered that a nova in a system like this likely produces gamma rays (magenta) through collisions among multiple shock waves in the rapidly expanding shell of debris. (Credit: NASA’s Goddard Space Flight Center/S. Wiessinger)
via americaspace
Beam out: elongated “Landau” states – Instead of rotating uniformly at a particular frequency, an international team of researchers has found that electrons in a magnetic field are capable of rotating at three different frequencies, depending on their quantum properties.
via physicsworld
Asteroid 1950 DA. “Following the February 2013 asteroid impact in Chelyabinsk, Russia, there is renewed interest in figuring out how to deal with the potential hazard of an asteroid impact,” said Rozitis. “Understanding what holds these asteroids together can inform strategies to guard against future impacts.” (Credit: NASA)
via tntoday
“The puzzle has been how these ‘seed’ black holes grew into the monsters that we now see within the time available, a few billion years at best,” says Priyamvada Natarajan, who proposes that early quasars took in a “super boost,” feasting from large reservoirs of gas that were part of early star clusters. (Credit: Lollito Larkham/Flickr)
via futurity
Lighting Science created special lightbulbs for the ISS. There are daylight bulbs with bluer light to encourage energy and activity during what would be daytime hours, and then there are lightbulbs that dial back on the blue to boost astronauts’ production of melatonin for a good night’s sleep. (Credit: Lightning Science)
via cnet