Physics in the News

Wednesday, September 3, 2014

Researchers discover new clues to determining the solar cycle

Magnetic stripes of solar material – with alternating south and north polarity – march toward the sun's equator. Such observations may change the way we think about what's driving the sun's 22-year solar cycle. (Credit:  S. McIntosh)
Magnetic stripes of solar material – with alternating south and north polarity – march toward the sun’s equator. Such observations may change the way we think about what’s driving the sun’s 22-year solar cycle. (Credit: S. McIntosh)
via nasa

Finding the ‘Holy Grail’ of making smarter robots

via abcnews

Do most cosmologists accept the reality of the cosmic fine tuning?

via winteryknight

DARPA’s experimental space plane XS-1 starts development

via dailycaller

How the space craft Dawn will get the low-down on the first dwarf planet ever discovered

This image illustrates Dawn’s spiral transfer from high altitude mapping orbit (HAMO) to low altitude mapping orbit (LAMO). The trajectory turns from blue to red as time progresses over two months. Red dashed sections are where ion thrusting is stopped so the spacecraft can point its main antenna toward Earth. (Credit: NASA/JPL-Caltech)
This image illustrates Dawn’s spiral transfer from high altitude mapping orbit (HAMO) to low altitude mapping orbit (LAMO). The trajectory turns from blue to red as time progresses over two months. Red dashed sections are where ion thrusting is stopped so the spacecraft can point its main antenna toward Earth. (Credit: NASA/JPL-Caltech)
via nasa

Japan’s decade long mission to mine an asteroid

The little mushroom cap between the two high-gain antennas is the X-band low-gain antenna. The little blue thing is DCAM3, a deployable camera that will hopefully take pictures of the explosion and impact of Hayabusa's "Small Carry-on Impactor" while the mothership hides safely in the shadow of the asteroid.
The little mushroom cap between the two high-gain antennas is the X-band low-gain antenna. The little blue thing is DCAM3, a deployable camera that will hopefully take pictures of the explosion and impact of Hayabusa’s “Small Carry-on Impactor” while the mothership hides safely in the shadow of the asteroid. (Credit: Lakdawalla)
via gizmodo

Phase change memory lets a single bit act as different logic gates

Phase change materials can switch between two forms depending on how quickly they're cooled. Cool them quickly and you get an amorphous form, which provides significant resistance to the flow of electrons. Cool them slowly and they will allow electrons to flow more readily. Once cooled, these two forms remain stable, locking the differences in conduction in place. (Credit: Columbia University)
Phase change materials can switch between two forms depending on how quickly they’re cooled. Cool them quickly and you get an amorphous form, which provides significant resistance to the flow of electrons. Cool them slowly and they will allow electrons to flow more readily. Once cooled, these two forms remain stable, locking the differences in conduction in place. (Credit: Columbia University, Timmer)
via arstechnica

Rosetta set for ‘capture’ manoeuvres

Rosetta scientists will be heading to Lisbon, Portugal, next week to present their early impressions of the comet to their peers.
Rosetta scientists will be heading to Lisbon, Portugal, next week to present their early  impressions of the comet to their peers.
via bbc

Deflecting near Earth asteroids with paint

The Yarkovsky Effect: The daylight side absorbs the solar radiation. As the object rotates, the dusk side cools down and hence emits more thermal photons than the dawn side. It may be possible to exploit this effect for planetary defense.
The Yarkovsky Effect: The daylight side absorbs the solar radiation. As the object rotates, the dusk side cools down and hence emits more thermal photons than the dawn side. It may be possible to exploit this effect for planetary defense.
via thespacereview

The beginning of extra-galactic Neutrino astronomy

 An event in the IceCube neutrino telescope. Photomultipliers attached to strings buried deep in the Antarctic ice detect the bursts of light emitted when a neutrino collides with the ice and produces a muon. The event shown was generated by an upward moving muon, which was produced by an upward moving muon neutrino that passed through the Earth.  APS/Joan Tycko;
An event in the IceCube neutrino telescope. Photomultipliers attached to strings buried deep in the Antarctic ice detect the bursts of light emitted when a neutrino collides with the ice and produces a muon. The event shown was generated by an upward moving muon, which was produced by an upward moving muon neutrino that passed through the Earth. APS/Joan Tycko;
via physics.aps

Is it the era of racing for colliders’ physics?

A 1974 photo of the part named Intersection 5 (I5) of the ISR of CERN's old PS, clearly shows the layout of the magnets and the crossing of the two beams pipes. (Credit: Salem)
A 1974 photo of the part named Intersection 5 (I5) of the ISR of CERN’s old PS, clearly shows the layout of the magnets and the crossing of the two beams pipes. (Credit: Salem)
via onislam

Design completed for prototype fast reactor

Russian power engineering R&D institute NIKIET has completed the engineering design for the BREST-300 lead-cooled fast reactor.  (NIKIET)
Russian power engineering R&D institute NIKIET has completed the engineering design for the BREST-300 lead-cooled fast reactor. (NIKIET)
via world-nuclear-news

Physics in the News

Tuesday, September 2, 2014

Tragedy: Russia’s orbiting zero-g sex geckos have all died

These aren't our illustrious orbiting sex geckos, but they are the experiment's ground-based control sex geckos, and that's almost as good!
These aren’t our illustrious orbiting sex geckos, but they are the experiment’s ground-based control sex geckos. (credit: imbp.ru)
via arstechnica

Out of this world! Astronaut captures release of Cygnus spacecraft in incredible timelapse from International Space Station

via slate

Time travel simulation resolves “Grandfather Paradox”

Entering a closed timelike curve tomorrow means you could end up at today. Credit: Dmitry Schidlovsky
Entering a closed timelike curve tomorrow means you could end up at today.
Credit: Dmitry Schidlovsky
via scientificamerican

Geometric meaning of the black hole horizon (PDF)

The event horizon is the boundary between a black hole and the rest of the universe. Any matter that spirals in toward the black hole and crosses the event horizon disappears. Ann Feild, Space Telescope Science Institute
Recent proposals postulate the existence of a “firewall” at the event horizon that may incinerate an infalling observer. These proposals face an apparent paradox if a freely falling observer detects nothing special in the vicinity of the horizon. (Credit: Moffat, Toth, Feild)
via mathoverflow

Google partners with UCSB to build quantum processors for artificial intelligence

photo: Erik Lucero / University of California, Santa Barbara
Google is going beyond using other people’s hardware. “With an integrated hardware group, the Quantum AI team at Google will now be able to implement and test new designs for quantum optimization and inference processors based on recent theoretical progress and insights from the D-Wave quantum annealing architecture,” says Hartmut Neven, Google’s Director of Engineering. (Credit: E. Lucero(UCSB), Lardinois)
via techcrunch

Research aimed at the heart of the Sun

 Inside the Borexino detector used to detect neutrinos from the sun. Credit Borexino Collaboration
Inside the Borexino detector used to detect neutrinos from the sun. Credit Borexino Collaboration
via nytimes

Watch a beautiful, powerful solar eruption

via latimes

Physics in the News

Sunday, August 31, 2014

What time is it in the Universe? (VIDEO)

via universetoday

The limits of gravity, space and time… (VIDEO)

via astronomytoday

Robonaut 2 gets legs, New Horizons Pluto-bound (VIDEO)

via floridatoday

Our Sun’s power is stable and steadfast (VIDEO)

via techtimes

Latest theory of everything to hit the physics shelves

Agravity, short for ‘adimensional gravity’, is one of the most recent Theory of Everything (ToE) proposals in a long line of such proposals that have come about ever since the problem of reconciling Gravity with the Standard Model was realized by physicists. It attempts to merge gravity with the Higgs interaction (the thing that gives particles mass and electric charge) and thus the rest of the Standard Model by reconciling the huge difference between the Planck Scale (on the order of 1019 giga-electron-volts (GeV) = 1011 Joules (J)) and the relatively small masses of all the other particles
Agravity, short for ‘adimensional gravity’, is one of the most recent Theory of Everything proposals in a long line of such proposals that have come about ever since the problem of reconciling Gravity with the Standard Model was realized by physicists.  It attempts to merge gravity with the Higgs interaction, and thus the rest of the Standard Model, by reconciling the huge difference between the Planck Scale and the relatively small masses of all the other particles. (Credit: SGTW, Daniels)

via united-academics

Mars Rover Opportunity to have memory wiped

The decision to reformat Opportunity’s flash memory early next month is prompted by the multiple computer resets the rover has been experiencing. This month alone, Opportunity has had to be rebooted a dozen times, interrupting valuable time that should be taken up with carrying out science near the rim of Endeavour crater. (Credit: NASA, O'Neil)
The decision to reformat Opportunity’s flash memory early next month is prompted by the multiple computer resets the rover has been experiencing. This month alone, Opportunity has had to be rebooted a dozen times, interrupting valuable time that should be taken up with carrying out science near the rim of Endeavour crater. (Credit: NASA, O’Neil)

via discovery

Astronomers spot the birth of ‘Sparky,’ a massive star factory(PDF)

“It’s fascinating that the early universe could make galaxies in this way and the modern universe just can’t anymore, and we’re really beginning to understand in a profound way how different the early universe was than it is now,” said Erica Nelson of Yale University. (Credit: Neslson)
via washingtonpost

NASA probes studying Earth’s radiation belts to celebrate two year anniversary

NASA’s Van Allen Probes orbit through two giant radiation belts surrounding Earth. Their observations help explain how particles in the belts can be sped up to nearly the speed of light. Image (Credit: NASA)

Mysteries of space dust revealed

This is a scanning electron microscope image of an interplanetary dust particle that has roughly chondritic elemental composition and is highly rough (chondritic porous: "CP"). CP types are usually aggregates of large numbers of sub-micrometer grains, clustered in a random open order. (Credit: Donald E. Brownlee)
This is a scanning electron microscope image of an interplanetary dust particle that has roughly chondritic elemental composition and is highly rough (chondritic porous: “CP”). CP types are usually aggregates of large numbers of sub-micrometer grains, clustered in a random open order. (Credit: Donald E. Brownlee)
via phys.org

Are there evidences for cosmic inflation?

Inflation explains the origin of the large-scale structure of the cosmos. Many physicists believe that inflation explains why the Universe appears to be the same in all directions (isotropic), why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed. (Credit: NASA)
Inflation explains the origin of the large-scale structure of the cosmos. Many physicists believe that inflation explains why the Universe appears to be the same in all directions (isotropic), why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed. (Credit: NASA)
via science20

Sparks fly as NASA pushes the limits of 3-D printing technology

Engineers just completed hot-fire testing with two 3-D printed rocket injectors. Certain features of the rocket components were designed to increase rocket engine performance. The injector mixed liquid oxygen and gaseous hydrogen together, which combusted at temperatures over 6,000 degrees Fahrenheit, producing more than 20,000 pounds of thrust. (Credit: NASA photo/David Olive)
Engineers just completed hot-fire testing with two 3-D printed rocket injectors. Certain features of the rocket components were designed to increase rocket engine performance. The injector mixed liquid oxygen and gaseous hydrogen together, which combusted at temperatures over 6,000 degrees Fahrenheit, producing more than 20,000 pounds of thrust. (Credit: NASA photo/David Olive)
via spacefellowship

Physics in the News

Friday, August 29, 2014

First robot astronaut ‘lonely’ in space

via independent

Keck observatory gives astronomers first glimpse of monster galaxy formation

This image shows observations of a newly discovered galaxy core dubbed GOODS-N-774, taken by the NASA/ESA Hubble Space Telescope's Wide Field Camera 3 and Advanced Camera for Surveys. The core is marked by the box inset, overlaid on a section of the Hubble GOODS-N, or GOODS North, field (Great Observatories Origins Deep Survey). (Credit: NASA, ESA)
This image shows observations of a newly discovered galaxy core dubbed GOODS-N-774, taken by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys. The core is marked by the box inset, overlaid on a section of the Hubble GOODS-N, or GOODS North, field (Great Observatories Origins Deep Survey). (Credit: NASA, ESA)
via phys.org

We are swimming in a superhot supernova soup

Physics in the News

Thursday, August 28, 2014

“Spooky” quantum entanglement reveals invisible objects

In the new experiment, the physicists entangled photons in two separate laser beams with different wavelengths, and hence color: one yellow and one red.
“This is a long-standing, really neat experimental idea,” says Paul Lett, of the National Institute of Standards and Technology in GaithersburgLett, “Now we have to see whether or not it will lead to something practical, or will remain just a clever demonstration of quantum mechanics.”(CreditBarreto-Lemos, Vergano)
via nationalgeographic

Strange neutrinos from the sun detected for the first time

The Borexino neutrino detector uses a sphere filled with liquid scintillator that emits light when excited. This inner vessel is surrounded by layers of shielding and by about 2,000 photomultiplier tubes to detect the light flashes.(Credit: Borexino Collaboration)
The Borexino neutrino detector uses a sphere filled with liquid scintillator that emits light when excited. This inner vessel is surrounded by layers of shielding and by about 2,000 photomultiplier tubes to detect the light flashes.(Credit: Borexino Collaboration)
via scientificamerican

Quark quartet fuels quantum feud

meson-molecule
MOLECULAR MODEL In the molecular model, quark-antiquark pairs form two color-neutral mesons that become weakly linked as a molecule.
DIQUARK MODEL In the diquark model, the particles form quark-quark and antiquark-antiquark pairs, which are forced to combine to balance their color charges.
DIQUARK MODEL The particles form quark-quark and antiquark-antiquark pairs, which are forced to combine to balance their color charges.
via simonsfoundation

What lit up the universe?

A computer model shows one scenario for how light is spread through the early universe on vast scales (more than 50 million light years across). Astronomers will soon know whether or not these kinds of computer models give an accurate portrayal of light in the real cosmos. (Credit: Andrew Pontzen/Fabio Governato)
A computer model shows one scenario for how light is spread through the early universe on vast scales (more than 50 million light years across). Astronomers will soon know whether or not these kinds of computer models give an accurate portrayal of light in the real cosmos. (Credit: Andrew Pontzen/Fabio Governato)
via phys

What happened to NASA’s Valkyrie Robot at the DRC Trials, and what’s next

via spectrum

Pebble-sized particles may jump-start planet formation

Radio/optical composite of the Orion Molecular Cloud Complex showing the OMC-2/3 star-forming filament. GBT data is shown in orange. Uncommonly large dust grains there may kick-start planet formation. (Credit: S. Schnee, et al.; B. Saxton, B. Kent (NRAO/AUI/NSF)
Radio/optical composite of the Orion Molecular Cloud Complex showing the OMC-2/3 star-forming filament. GBT data is shown in orange. Uncommonly large dust grains there may kick-start planet formation. (Credit: S. Schnee, et al.; B. Saxton, B. Kent (NRAO/AUI/NSF)
via rdmag

Physicists propose superabsorption of light beyond the limits of classical physics

In one potential method to realize superabsorption, a superabsorbing ring absorbs incident photons, giving rise to excitons. (Credit: Higgins, et al.)
In one potential method to realize superabsorption, a superabsorbing ring absorbs incident photons, giving rise to excitons. (Credit: Higgins, et al.)
via phys.org