The equations of general relativity are so fiendish that nobody has been able to work out what a collision between two black holes would look like, until now… (PDF)

The difficult part of this work is calculating the trajectory of the photons using the physics of general relativity. These equations are notoriously non-linear, so physicist sometimes simplify them by assuming that a system remains constant in the time it takes for light to pass by. The difficulty with black hole binaries is that this assumption does not hold— these objects orbit so rapidly as they approach each other that space-time warps, even during the time it takes for light to pass by.

Andy Bohn(et al.) at Cornell University in Ithaca, New York, reveals how in-spiraling black hole pairs should distort the light field around them. The team has concluded that from large distances, binaries are more or less indistinguishable from single black holes. Only a relatively close observer would be able to see the fascinating detail that they have simulating or one with very high resolving power.
The first observation of much bigger deflections, such as those produced by black holes or black hole pairs, will be something of a triumph for whoever spots them first.
via physics arxiv