On the right, an artificial atom generates sound waves consisting of ripples on the surface of a solid. The sound, known as a surface acoustic wave (SAW) is picked up on the left by a “microphone” composed of interlaced metal fingers. According to theory, the sound consists of a stream of quantum particles, the weakest whisper physically possible. The illustration is not to scale. (Credit: Philip Krantz, Krantz NanoArt)
via chalmers
Close-ups of an experiment conducted by John Bush and his student Daniel Harris, in which a bouncing droplet of fluid was propelled across a fluid bath by waves it generated. (Credit: Dan Harris)
via phys
The Smoluchowsi trapdoor is a simple test for any proposed exorcism of Maxwell’s demon. It is immediately obvious that an information based exorcism is of no use. The are no sensors in this simple device that collect information; and there are memory devices that would need erasure if the demon is to return to its original state. (Credit: Hemmo, M.; Shenker)
via aip
Gravity Probe B (GP-B) has measured spacetime curvature near Earth to test related models in application of Einstein’s general theory of relativity. (Credit: S. Hossenfelder, Wiki Commons)
via backreaction
The research group resolved the challenging issue attributed to solid crystals, namely widely spread emission wavelengths, and succeeded in fabricating many single-photon sources that emit photons with nearly identical emission wavelengths. (Credit: National Institute for Materials Science (NIMS))
via innovations-report
C H Figure 1: Acausality: Penrose diagram of a black hole with signature c hange at high curvature (hashed region). In contrast to traditional non-sing ular models, there is an event horizon (dashed line H , the boundary of the region that is determined by backward evolution from future infinity) and a Chauchy horizon (dash-dotte d line C , the boundary of the region obtained by forward evolution of the high-curvature re gion) (Credit: Martin Bojowald)
via arXiv
Giant alien planets known as “hot Jupiters” can induce wobbles in their parent stars that may lead to the wild, close orbits seen by astronomers. This diagram shows the relationship between wobbling stars and the orbital tilt of hot Jupiter planets. (Credit: Cornell University/N.Storch, K.Anderson, D.Lai)
via space
Artist impression of the Square Kilometer Array. If all goes according to plan in the next decade, we could see these small perturbations on the moon—and begin to solve some of the mysteries of space. (Credit: SKA)
via gizmodo
Space travelers from around the world are headed to China this month for an international Planetary Congress, which will explore the possibilities for expanding human spaceflight cooperation among different countries. Pictured above is China’s first astronaut, Yang Liwei, is now vice director of the China Manned Space Engineering Office. (Credit: CMS)
via space
An animation of the quicksort algorithm sorting an array of randomized values. The red bars mark the pivot element; at the start of the animation, the element farthest to the right hand side is chosen as the pivot. (Credit: RonaldH)
via wired
Rather than keeping all its eggs in D-Wave’s basket, Google’s “Quantum A.I. Lab” announced that it is starting a collaboration with an academic quantum computing researcher, John Martinis of the University of California-Santa Barbara. (Credit: Wiki, Timmer)
via arstechnica
A new map places the Milky Way (black dot) within a large supercluster of galaxies (white dots) by tracing the gravitational pull of galaxies toward one another. White filaments reveal the paths of galaxies moving toward a gravitational center in the new supercluster, dubbed “Laniakea.” (Blue, low galaxy density; green, intermediate; red, high.) (Credit: DP at CEA/Saclay, France)
via nationalgeographic
This three-dimensional map offers a first look at the web-like large-scale distribution of dark matter, an invisible form of matter that accounts for most of the Universe’s imaginary mass. The map reveals a loose network of dark matter filaments, gradually collapsing under the relentless pull of gravity, and growing clumpier over time. The three axes of the box correspond to sky position, and distance from the Earth increasing from left to right. Note how the clumping of the dark matter becomes more pronounced, moving right to left across the volume map, from the early Universe to the more recent Universe. (Credit: NASA/ESA/Richard Massey)
via ku.edu
Cosmologists have revealed intruiging new ways to probe the mystery of whether dark energy exists and how it might be accelerating the universe’s growth. (Credit: Picturegarden/Getty)
via newscientist
As time ticks down to the restart of the Large Hadron Collider, scientists are making sure their detectors run like clockwork. (Credit: Antonio Saba, CERN)
via symmetrymagazine
Schematic representation of a spin-exchanging collision. Two atoms in different orbitals (blue and green) and different spin orientations (black arrows) collide. The two atoms exiting the collision have swapped their spins after interacting. Crucially, the process is independent of the two specific initial spin states. (Credit: LMU-München / MPQ, Quantum Many Body Systems Division)
via phys.org
The Giant Magellan Telescope (GMT) is a ground-based extremely large telescope planned for completion in 2020.[5] It will consist of seven 8.4 m (27.6 ft) diameter primary segments,[6] with the resolving power of a 24.5 m (80.4 ft) primary mirror and collecting area equivalent to a 22.0 m (72.2 ft) one,[7] (which is about 368 square meters) (Credit: wiki, Tarantola)
via gizmodo
A new analysis suggests that hot super-Earths might be the skeletal remnants of hot Jupiters stripped of their atmospheres. The above image is an artist’s depiction of an early stage in the destruction of a hot Jupiter by its star. (Credit: NASA / GSFC / Reddy, S. Hall)
via skyandtelescope
Recent proposals postulate the existence of a “firewall” at the event horizon that may incinerate an infalling observer. These proposals face an apparent paradox if a freely falling observer detects nothing special in the vicinity of the horizon. (Credit: Moffat, Toth, Feild)
via mathoverflow
Google is going beyond using other people’s hardware. “With an integrated hardware group, the Quantum AI team at Google will now be able to implement and test new designs for quantum optimization and inference processors based on recent theoretical progress and insights from the D-Wave quantum annealing architecture,” says Hartmut Neven, Google’s Director of Engineering. (Credit: E. Lucero(UCSB), Lardinois)
via techcrunch
Agravity, short for ‘adimensional gravity’, is one of the most recent Theory of Everything proposals in a long line of such proposals that have come about ever since the problem of reconciling Gravity with the Standard Model was realized by physicists. It attempts to merge gravity with the Higgs interaction, and thus the rest of the Standard Model, by reconciling the huge difference between the Planck Scale and the relatively small masses of all the other particles. (Credit: SGTW, Daniels)
The decision to reformat Opportunity’s flash memory early next month is prompted by the multiple computer resets the rover has been experiencing. This month alone, Opportunity has had to be rebooted a dozen times, interrupting valuable time that should be taken up with carrying out science near the rim of Endeavour crater. (Credit: NASA, O’Neil)
“It’s fascinating that the early universe could make galaxies in this way and the modern universe just can’t anymore, and we’re really beginning to understand in a profound way how different the early universe was than it is now,” said Erica Nelson of Yale University. (Credit: Neslson)
via washingtonpost
NASA’s Van Allen Probes orbit through two giant radiation belts surrounding Earth. Their observations help explain how particles in the belts can be sped up to nearly the speed of light. Image (Credit: NASA)
This is a scanning electron microscope image of an interplanetary dust particle that has roughly chondritic elemental composition and is highly rough (chondritic porous: “CP”). CP types are usually aggregates of large numbers of sub-micrometer grains, clustered in a random open order. (Credit: Donald E. Brownlee)
via phys.org
Inflation explains the origin of the large-scale structure of the cosmos. Many physicists believe that inflation explains why the Universe appears to be the same in all directions (isotropic), why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed. (Credit: NASA)
via science20
Engineers just completed hot-fire testing with two 3-D printed rocket injectors. Certain features of the rocket components were designed to increase rocket engine performance. The injector mixed liquid oxygen and gaseous hydrogen together, which combusted at temperatures over 6,000 degrees Fahrenheit, producing more than 20,000 pounds of thrust. (Credit: NASA photo/David Olive)
via spacefellowship