Physics in the News

Thursday, September 4, 2014

New map locates Milky Way in neighborhood of 100,000 galaxies

A new map places the Milky Way (black dot) within a large supercluster of galaxies (white dots) by tracing the gravitational pull of galaxies toward one another. White filaments reveal the paths of galaxies moving toward a gravitational center in the new supercluster, dubbed "Laniakea." (Blue, low galaxy density; green, intermediate; red, high.) SDvision interactive visualization software by DP at CEA/Saclay, France)
A new map places the Milky Way (black dot) within a large supercluster of galaxies (white dots) by tracing the gravitational pull of galaxies toward one another. White filaments reveal the paths of galaxies moving toward a gravitational center in the new supercluster, dubbed “Laniakea.” (Blue, low galaxy density; green, intermediate; red, high.) (Credit: DP at CEA/Saclay, France)
via nationalgeographic

Small asteroid to safely pass close to Earth Sunday

via nasa

Researcher advances a new model for a cosmological enigma — dark matter

This three-dimensional map offers a first look at the web-like large-scale distribution of dark matter, an invisible form of matter that accounts for most of the Universe's imaginary mass. The map reveals a loose network of dark matter filaments, gradually collapsing under the relentless pull of gravity, and growing clumpier over time. The three axes of the box correspond to sky position (in right ascension and declination), and distance from the Earth increasing from left to right (as measured by cosmological redshift). Note how the clumping of the dark matter becomes more pronounced, moving right to left across the volume map, from the early Universe to the more recent Universe.
This three-dimensional map offers a first look at the web-like large-scale distribution of dark matter, an invisible form of matter that accounts for most of the Universe’s imaginary mass. The map reveals a loose network of dark matter filaments, gradually collapsing under the relentless pull of gravity, and growing clumpier over time. The three axes of the box correspond to sky position, and distance from the Earth increasing from left to right. Note how the clumping of the dark matter becomes more pronounced, moving right to left across the volume map, from the early Universe to the more recent Universe. (Credit: NASA/ESA/Richard Massey)
via ku.edu

Dark energy hunt gets weird

mg22329852.400-1_300
Cosmologists have revealed intruiging new ways to probe the mystery of whether dark energy exists and how it might be accelerating the universe’s growth. (Credit: Picturegarden/Getty)
via newscientist

Watching ‘the clock’ at the LHC

As time ticks down to the restart of the Large Hadron Collider, scientists are making sure their detectors run like clockwork.Photo by Antonio Saba, CERN
As time ticks down to the restart of the Large Hadron Collider, scientists are making sure their detectors run like clockwork.  (Credit: Antonio Saba, CERN)
via symmetrymagazine

Mind-blowing science explained: Neutron stars “are basically atoms as big as mountains”

via salon

Ultracold atoms juggle spins with exceptional symmetry

Schematic representation of a spin-exchanging collision. Two atoms in different orbitals (blue and green) and different spin orientations (black arrows) collide. The two atoms exiting the collision have swapped their spins after interacting. Crucially, the process is independent of the two specific initial spin states. Credit: LMU-München / MPQ, Quantum Many Body Systems Division Read more at: http://phys.org
Schematic representation of a spin-exchanging collision. Two atoms in different orbitals (blue and green) and different spin orientations (black arrows) collide. The two atoms exiting the collision have swapped their spins after interacting. Crucially, the process is independent of the two specific initial spin states. (Credit: LMU-München / MPQ, Quantum Many Body Systems Division)
via phys.org

How the enormous mirrors on the world’s largest telescope are made

The Giant Magellan Telescope (GMT) is a ground-based extremely large telescope planned for completion in 2020.[5] It will consist of seven 8.4 m (27.6 ft) diameter primary segments,[6] with the resolving power of a 24.5 m (80.4 ft) primary mirror and collecting area equivalent to a 22.0 m (72.2 ft) one,[7] (which is about 368 square meters) (Credit: wiki, Tarantola)
via gizmodo

Cosmic forecast: Dark clouds will give way to sunshine

via phys.org

Do exoplanets transform between classes?

A new analysis suggests that hot super-Earths might be the skeletal remnants of hot Jupiters stripped of their atmospheres. The above image is an artist’s depiction of an early stage in the destruction of a hot Jupiter by its star. (Credit: NASA / GSFC / Reddy, S. Hall)
via skyandtelescope

Physics in the News

Tuesday, September 2, 2014

Tragedy: Russia’s orbiting zero-g sex geckos have all died

These aren't our illustrious orbiting sex geckos, but they are the experiment's ground-based control sex geckos, and that's almost as good!
These aren’t our illustrious orbiting sex geckos, but they are the experiment’s ground-based control sex geckos. (credit: imbp.ru)
via arstechnica

Out of this world! Astronaut captures release of Cygnus spacecraft in incredible timelapse from International Space Station

via slate

Time travel simulation resolves “Grandfather Paradox”

Entering a closed timelike curve tomorrow means you could end up at today. Credit: Dmitry Schidlovsky
Entering a closed timelike curve tomorrow means you could end up at today.
Credit: Dmitry Schidlovsky
via scientificamerican

Geometric meaning of the black hole horizon (PDF)

The event horizon is the boundary between a black hole and the rest of the universe. Any matter that spirals in toward the black hole and crosses the event horizon disappears. Ann Feild, Space Telescope Science Institute
Recent proposals postulate the existence of a “firewall” at the event horizon that may incinerate an infalling observer. These proposals face an apparent paradox if a freely falling observer detects nothing special in the vicinity of the horizon. (Credit: Moffat, Toth, Feild)
via mathoverflow

Google partners with UCSB to build quantum processors for artificial intelligence

photo: Erik Lucero / University of California, Santa Barbara
Google is going beyond using other people’s hardware. “With an integrated hardware group, the Quantum AI team at Google will now be able to implement and test new designs for quantum optimization and inference processors based on recent theoretical progress and insights from the D-Wave quantum annealing architecture,” says Hartmut Neven, Google’s Director of Engineering. (Credit: E. Lucero(UCSB), Lardinois)
via techcrunch

Research aimed at the heart of the Sun

 Inside the Borexino detector used to detect neutrinos from the sun. Credit Borexino Collaboration
Inside the Borexino detector used to detect neutrinos from the sun. Credit Borexino Collaboration
via nytimes

Watch a beautiful, powerful solar eruption

via latimes

Physics in the News

Sunday, August 31, 2014

What time is it in the Universe? (VIDEO)

via universetoday

The limits of gravity, space and time… (VIDEO)

via astronomytoday

Robonaut 2 gets legs, New Horizons Pluto-bound (VIDEO)

via floridatoday

Our Sun’s power is stable and steadfast (VIDEO)

via techtimes

Latest theory of everything to hit the physics shelves

Agravity, short for ‘adimensional gravity’, is one of the most recent Theory of Everything (ToE) proposals in a long line of such proposals that have come about ever since the problem of reconciling Gravity with the Standard Model was realized by physicists. It attempts to merge gravity with the Higgs interaction (the thing that gives particles mass and electric charge) and thus the rest of the Standard Model by reconciling the huge difference between the Planck Scale (on the order of 1019 giga-electron-volts (GeV) = 1011 Joules (J)) and the relatively small masses of all the other particles
Agravity, short for ‘adimensional gravity’, is one of the most recent Theory of Everything proposals in a long line of such proposals that have come about ever since the problem of reconciling Gravity with the Standard Model was realized by physicists.  It attempts to merge gravity with the Higgs interaction, and thus the rest of the Standard Model, by reconciling the huge difference between the Planck Scale and the relatively small masses of all the other particles. (Credit: SGTW, Daniels)

via united-academics

Mars Rover Opportunity to have memory wiped

The decision to reformat Opportunity’s flash memory early next month is prompted by the multiple computer resets the rover has been experiencing. This month alone, Opportunity has had to be rebooted a dozen times, interrupting valuable time that should be taken up with carrying out science near the rim of Endeavour crater. (Credit: NASA, O'Neil)
The decision to reformat Opportunity’s flash memory early next month is prompted by the multiple computer resets the rover has been experiencing. This month alone, Opportunity has had to be rebooted a dozen times, interrupting valuable time that should be taken up with carrying out science near the rim of Endeavour crater. (Credit: NASA, O’Neil)

via discovery

Astronomers spot the birth of ‘Sparky,’ a massive star factory(PDF)

“It’s fascinating that the early universe could make galaxies in this way and the modern universe just can’t anymore, and we’re really beginning to understand in a profound way how different the early universe was than it is now,” said Erica Nelson of Yale University. (Credit: Neslson)
via washingtonpost

NASA probes studying Earth’s radiation belts to celebrate two year anniversary

NASA’s Van Allen Probes orbit through two giant radiation belts surrounding Earth. Their observations help explain how particles in the belts can be sped up to nearly the speed of light. Image (Credit: NASA)

Mysteries of space dust revealed

This is a scanning electron microscope image of an interplanetary dust particle that has roughly chondritic elemental composition and is highly rough (chondritic porous: "CP"). CP types are usually aggregates of large numbers of sub-micrometer grains, clustered in a random open order. (Credit: Donald E. Brownlee)
This is a scanning electron microscope image of an interplanetary dust particle that has roughly chondritic elemental composition and is highly rough (chondritic porous: “CP”). CP types are usually aggregates of large numbers of sub-micrometer grains, clustered in a random open order. (Credit: Donald E. Brownlee)
via phys.org

Are there evidences for cosmic inflation?

Inflation explains the origin of the large-scale structure of the cosmos. Many physicists believe that inflation explains why the Universe appears to be the same in all directions (isotropic), why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed. (Credit: NASA)
Inflation explains the origin of the large-scale structure of the cosmos. Many physicists believe that inflation explains why the Universe appears to be the same in all directions (isotropic), why the cosmic microwave background radiation is distributed evenly, why the universe is flat, and why no magnetic monopoles have been observed. (Credit: NASA)
via science20

Sparks fly as NASA pushes the limits of 3-D printing technology

Engineers just completed hot-fire testing with two 3-D printed rocket injectors. Certain features of the rocket components were designed to increase rocket engine performance. The injector mixed liquid oxygen and gaseous hydrogen together, which combusted at temperatures over 6,000 degrees Fahrenheit, producing more than 20,000 pounds of thrust. (Credit: NASA photo/David Olive)
Engineers just completed hot-fire testing with two 3-D printed rocket injectors. Certain features of the rocket components were designed to increase rocket engine performance. The injector mixed liquid oxygen and gaseous hydrogen together, which combusted at temperatures over 6,000 degrees Fahrenheit, producing more than 20,000 pounds of thrust. (Credit: NASA photo/David Olive)
via spacefellowship

Physics in the News

Saturday, August 30, 2014

The pivotal discovery you’ve probably never heard of

Three consecutive images of comet C/1979 Q1 plunging into the solar atmosphere on August 30, 1979. In these SOLWIND coronagraph images, the Sun is masked behind the solid disk in the center of the image. (Credit: NRL)
Three consecutive images of comet C/1979 Q1 plunging into the solar atmosphere on August 30, 1979. In these SOLWIND coronagraph images, the Sun is masked behind the solid disk in the center of the image. (Credit: NRL)
via planetary

NASA’s Spitzer scopes out huge asteroid smashup, and just misses it

Spitzer's observations of the aftermath of an asteroid collision offer insights into how Earth was formed. (Credit: NASA)
Spitzer’s observations of the aftermath of an asteroid collision offer insights into how Earth was formed. (Credit: NASA)
via latimes

Yes, the Universe is expanding at an accelerating rate, sort of

Before the big explosion: The artist’s impression shows a binary star system where mass is transferred from a companion to a white dwarf. As soon as sufficient matter has collected on the surface of the dwarf star, this can trigger a nuclear explosion which in turn ignites the catastrophic nuclear burning and destroys the white dwarf – a type Ia supernova flares up. (Credit: ESA, Justyn R. Maund)
Before the big explosion: The artist’s impression shows a binary star system where mass is transferred from a companion to a white dwarf. As soon as sufficient matter has collected on the surface of the dwarf star, this can trigger a nuclear explosion which in turn ignites the catastrophic nuclear burning and destroys the white dwarf – a type Ia supernova flares up. (Credit: ESA, Justyn R. Maund)
via newscientist

Distillery anticipates zero gravity single malt whiskeys return to Earth

Director of distilling, Bill Lumsden. Ardbeg Scottish whisky was sent into space three years ago in an experiment looking at the impact of gravity on how it matures.  It will return to Earth September 12th. (Credit: Paul Dodds/Ardbeg/PA)
Director of distilling, Bill Lumsden. Ardbeg Scottish whisky was sent into space three years ago in an experiment looking at the impact of gravity on how it matures. It will return to Earth September 12th. (Credit: Paul Dodds/Ardbeg/PA)
via theguardian

The largest ever made rocket may carry humans to Mars

via mysteriousuniverse

Meet the computer scientist trying to digitize, analyze and visualize our past

via gigaom

NASA warns massive solar flare can disrupt communication signals

NASA has warned that a new sunspot spewing powerful X-class flares is beginning to rotate to a position directly in line with Earth. (Credit: NASA)
NASA has warned that a new sunspot spewing powerful X-class flares is beginning to rotate to a position directly in line with Earth. (Credit: NASA)
via austriantribune

Why the multiverse may be the most dangerous idea in physics

In the past decade an extraordinary claim has captivated cosmologists: that the expanding universe we see around us is not the only one; that billions of other universes are out there, too. (Credit: Slim Films, Ellis)
In the past decade an extraordinary claim has captivated cosmologists: that the expanding universe we see around us is not the only one; that billions of other universes are out there, too. (Credit: Slim Films, Ellis)
via scientificamerican

Experiments reveal a neutron halo around neutron-rich magnesium nuclei

Neutron-rich magnesium nuclei have a neutron halo that extends beyond the tightly packed core of the nucleus. (Credit: Ken-ichiro Yoneda, RIKEN Nishina Center for Accelerator-Based Science)
Neutron-rich magnesium nuclei have a neutron halo that extends beyond the tightly packed core of the nucleus. (Credit: K. Yoneda, RIKEN Nishina Center for Accelerator-Based Science)
via phys.org

Voyage to Pluto: NASA’s New Horizons mission continuing Voyager’s legacy of exploration

via spaceref

Happy 30th birthday to Discovery, NASA’s greatest space shuttle

On August 30th, 1984, the space shuttle Discovery launched on its first voyage to space. It wasn't the first, but over the next 27 years it became the undeniable king of NASA's shuttle program. (Credit: NASA)
On August 30th, 1984, the space shuttle Discovery launched on its first voyage to space. It wasn’t the first, but over the next 27 years it became the undeniable king of NASA’s shuttle program. (Credit: NASA)
via gizmodo

Physics in the News

Thursday, August 28, 2014

“Spooky” quantum entanglement reveals invisible objects

In the new experiment, the physicists entangled photons in two separate laser beams with different wavelengths, and hence color: one yellow and one red.
“This is a long-standing, really neat experimental idea,” says Paul Lett, of the National Institute of Standards and Technology in GaithersburgLett, “Now we have to see whether or not it will lead to something practical, or will remain just a clever demonstration of quantum mechanics.”(CreditBarreto-Lemos, Vergano)
via nationalgeographic

Strange neutrinos from the sun detected for the first time

The Borexino neutrino detector uses a sphere filled with liquid scintillator that emits light when excited. This inner vessel is surrounded by layers of shielding and by about 2,000 photomultiplier tubes to detect the light flashes.(Credit: Borexino Collaboration)
The Borexino neutrino detector uses a sphere filled with liquid scintillator that emits light when excited. This inner vessel is surrounded by layers of shielding and by about 2,000 photomultiplier tubes to detect the light flashes.(Credit: Borexino Collaboration)
via scientificamerican

Quark quartet fuels quantum feud

meson-molecule
MOLECULAR MODEL In the molecular model, quark-antiquark pairs form two color-neutral mesons that become weakly linked as a molecule.
DIQUARK MODEL In the diquark model, the particles form quark-quark and antiquark-antiquark pairs, which are forced to combine to balance their color charges.
DIQUARK MODEL The particles form quark-quark and antiquark-antiquark pairs, which are forced to combine to balance their color charges.
via simonsfoundation

What lit up the universe?

A computer model shows one scenario for how light is spread through the early universe on vast scales (more than 50 million light years across). Astronomers will soon know whether or not these kinds of computer models give an accurate portrayal of light in the real cosmos. (Credit: Andrew Pontzen/Fabio Governato)
A computer model shows one scenario for how light is spread through the early universe on vast scales (more than 50 million light years across). Astronomers will soon know whether or not these kinds of computer models give an accurate portrayal of light in the real cosmos. (Credit: Andrew Pontzen/Fabio Governato)
via phys

What happened to NASA’s Valkyrie Robot at the DRC Trials, and what’s next

via spectrum

Pebble-sized particles may jump-start planet formation

Radio/optical composite of the Orion Molecular Cloud Complex showing the OMC-2/3 star-forming filament. GBT data is shown in orange. Uncommonly large dust grains there may kick-start planet formation. (Credit: S. Schnee, et al.; B. Saxton, B. Kent (NRAO/AUI/NSF)
Radio/optical composite of the Orion Molecular Cloud Complex showing the OMC-2/3 star-forming filament. GBT data is shown in orange. Uncommonly large dust grains there may kick-start planet formation. (Credit: S. Schnee, et al.; B. Saxton, B. Kent (NRAO/AUI/NSF)
via rdmag

Physicists propose superabsorption of light beyond the limits of classical physics

In one potential method to realize superabsorption, a superabsorbing ring absorbs incident photons, giving rise to excitons. (Credit: Higgins, et al.)
In one potential method to realize superabsorption, a superabsorbing ring absorbs incident photons, giving rise to excitons. (Credit: Higgins, et al.)
via phys.org