Physics in the News

Wednesday, October 8, 2014

UW fusion reactor concept could be cheaper than coal

The UW’s current fusion experiment, HIT-SI3. It is about one-tenth the size of the power-producing dynomak concept. (Credit: U of Washington)
The UW’s current fusion experiment, HIT-SI3. It is about one-tenth the size of the power-producing dynomak concept. (Credit: U of Washington)
via washington.edu

Researchers achieve quantum teleporting

via azoquantum

Tipping the spherical cow: The initial conditions of star formation

Gas column density 5 Myr after stars begin forming in the “real” Clouds (left panels) and corresponding Spheres (right panels). The Spheres begin forming stars 5-6 Myr after t=0, so the figure shows simulations at a similar stage of star formation. Clouds show more widespread star formation, and alignment of their major gas filaments along the larger-scale structures present in the galaxy. Part of Figure 2 from Rey-Raposo, Dobbs & Duarte-Cabral 2014.
Gas column density 5 Myr after stars begin forming in the “real” Clouds (left panels) and corresponding Spheres (right panels). The Spheres begin forming stars 5-6 Myr after t=0, so the figure shows simulations at a similar stage of star formation. Clouds show more widespread star formation, and alignment of their major gas filaments along the larger-scale structures present in the galaxy. (Credit: Rey-Raposo, Dobbs & Duarte-Cabral 2014)
via astrobites

Breakthrough allows researchers to watch molecules “wiggle”

Difference electron density maps showing the comparison of control and HATRX data for thaumatin. (Credit: University of Leeds)
via rdmag

Monster galaxies resort to cannibalism to keep growing

Larger galaxies are unable to create new stars at a rapid enough pace so they start to “eat” stars in neighboring galaxies. (Photo By Nasa/Getty Images)
Larger galaxies are unable to create new stars at a rapid enough pace so they start to “eat” stars in neighboring galaxies. (Photo By Nasa/Getty Images)
via cbs

Aliens may be too distant for contact

The SETI Institute's Allen Telescope Array (ATA) is hunting for radio signals from hypothetical intelligent alien life in our galaxy. (Credit: SETI) Institute
The SETI Institute’s Allen Telescope Array (ATA) is hunting for radio signals from hypothetical intelligent alien life in our galaxy. (Credit: SETI) Institute
via aninews

How NASA plans to utilize lasers in order to draw 3D maps of the earth’s forests

NASA has a new project underway called GEDI. The sole purpose of GEDI is to point a laser-based device at Earth from the International Space Station in order to map out forests in 3D, eventually determining the amount of carbon in Earth’s forests. (Credit: NASA's Goddard Space)
NASA has a new project underway called GEDI. The sole purpose of GEDI is to point a laser-based device at Earth from the International Space Station in order to map out forests in 3D, eventually determining the amount of carbon in Earth’s forests. (Credit: NASA’s Goddard Space)
via industrytap

Sierra Nevada protest halts production of SpaceX and Boeing space taxis

 The Wait For Space A look through the open hatch of SpaceX's Dragon V2 capsule, one of two designs chosen for NASA's Commercial Crew Transportation Capability program. Both Boeing and SpaceX have been told to halt production of their space taxi designs until a protest filed by the Sierra Nevada Corporation has been resolved. (Credit: NASA)
A look through the open hatch of SpaceX’s Dragon V2 capsule, one of two designs chosen for NASA’s Commercial Crew Transportation Capability program. Both Boeing and SpaceX have been told to halt production of their space taxi designs until a protest filed by the Sierra Nevada Corporation has been resolved. (Credit: NASA)
via popsci

Three win Nobel for super-zoom microscopes

German winner of the Nobel Prize for chemistry Stefan Hell gestures at a small party with his colleagues in Goettingen, Germany, Wednesday, Oct. 8, 2014. Hell shares the prize with Americans Eric Betzig and William E. Moerner for developing ways to dramatically improve the resolution of optical microscopes. Hell developed the underlying technology for R&D 100 Awards-winning super-resolution microscopes from Leica. (Credit AP/dpa, Swen Pfoertner)
German winner of the Nobel Prize for chemistry Stefan Hell gestures at a small party with his colleagues in Goettingen, Germany, Wednesday, Oct. 8, 2014. Hell shares the prize with Americans Eric Betzig and William E. Moerner for developing ways to dramatically improve the resolution of optical microscopes. Hell developed the underlying technology for R&D 100 Awards-winning super-resolution microscopes from Leica. (Credit AP/dpa, Swen Pfoertner)
via rdmag

Newly discovered letter gives a rare glimpse into Einstein’s personal views on life

he Einstein Papers Project, a group of scholars devoted to collecting and transcribing Einstein’s works and publishing The Collected Papers of Albert Einstein both online and in printed format, have collected thousands of Einstein’s letters, both those from him and to him. But this exchange is new. (Credit: The Telegraph)
The Einstein Papers Project, a group of scholars devoted to collecting and transcribing Einstein’s works and publishing The Collected Papers of Albert Einstein both online and in printed format, have collected thousands of Einstein’s letters, both those from him and to him. But this exchange is new. (Credit: The Telegraph)
via inquisitr

Physics in the News

Wednesday, September 24, 2014

New Results from Planck: It Doesn’t Look Good For BICEP2

Dust map of the Universe. The region studied by BICEP2 is indicated by the rectangle in the right circle. (Credit: Planck Collaboration)
Dust map of the Universe. The region studied by BICEP2 is indicated by the rectangle in the right circle. (Credit: Planck Collaboration)
via universetoday

Artificial Atoms Talk … and Scientists Listen

n this illustration, the artificial atom on the right side of the image sends out sound waves that are picked up by the microphone on the left. (Credit: Philip Krantz)
n this illustration, the artificial atom on the right side of the image sends out sound waves that are picked up by the microphone on the left. (Credit: Philip Krantz)
via livescience

What’s Next for Inflation Cosmology – New Updates

(Credit: Andrei Linde)
A serious challenge to the discovery of gravity waves by the BICEP2 2014 results has appeared: the researchers had underestimated the amount of interstellar dust that could be contaminating their data. (Credit: MacRobert, Andrei Linde)
via skyandtelescope

Clear skies reveal water on distant Neptune-sized planet

Scientists have found definitive traces of water on a relatively small exoplanet. HAT-P-11b is the size of Neptune and has copious amounts of both water vapor and hydrogen in its atmosphere. (Credit: NASA)
Scientists have found definitive traces of water on a relatively small exoplanet. HAT-P-11b is the size of Neptune and four times the size of Earth. The exoplanet has copious amounts of both water vapor and hydrogen in its atmosphere. (Credit: NASA)
via bbc

Hugh Everett: The man who gave us the multiverse

via newscientist

What is the geometry of the universe?

Our current model of the early inflationary period predicts that the universe should be flat, and so far that has held up. If the universe actually is curved, then the inflationary period must have been more complex than we have thought. (Credit: Koberlien)
Our current model of the early inflationary period predicts that the universe should be flat, and so far that has held up. If the universe actually is curved, then the inflationary period must have been more complex than we have thought. (Credit: Koberlien)
via phys.org

Robot Octopus Takes to the Sea

via spectrum

Physics in the News

Friday, September 19, 2014

An anomaly in satellites’ flybys confounds scientists

An artist's rendition of Rosetta probe during a flyby. (Credit: ESA/C.Carreau)
When space probes, such as Rosetta and Cassini, fly over certain planets and moons, in order to gain momentum and travel long distances, their speed changes slightly for an unknown reason. A researcher has now analyzed whether or not a hypothetical gravitomagnetic field could have an influence. However, other factors such as solar radiation, tides, or even relativistic effects or dark matter could be behind this mystery. An artist’s rendition of Rosetta probe during a flyby. (Credit: ESA/C.Carreau)
via sciencedaily

Particle detector finds hints of dark matter in space

The starboard truss of the International Space Station while Space Shuttle Endeavour docked with the station. The newly installed Alpha Magnetic Spectrometer (AMS) is visible at center left. (Credit: NASA)
The starboard truss of the International Space Station while Space Shuttle Endeavour docked with the station. The newly installed Alpha Magnetic Spectrometer (AMS) is visible at center left. (Credit: NASA)
via mit

Finding dark energy in the details

The dome of the Blanco Telescope, which houses DECam, the 570-megapixel CCD camera used for the Dark Energy Survey, at the Cerro Tololo Inter-American Observatory in Chile. (Credit: Reidar Hahn)
The dome of the Blanco Telescope, which houses DECam, the 570-megapixel CCD camera used for the Dark Energy Survey, at the Cerro Tololo Inter-American Observatory in Chile. (Credit: Reidar Hahn)
via simonsfoundation

The lonely landscape of Rosetta’s comet

The lonely landscape of Rosetta's comet
The lonely landscape of Rosetta’s comet – Comet 67P/Churyumov-Gerasimenko from a distance of just 29 kilometers (Credit: ESA)
via abc

Miranda: An icy moon deformed by tidal heating

Mosaic of southern hemisphere of Miranda, the innermost regular satellite of Uranus, with radius of 236 km. Projection is orthographic, centered on the south pole. Visible from left to right are Elsinore, Inverness, and Arden coronae. (Credit: NASA/Jet Propulsion Laboratory/Ted Stryk)
Mosaic of southern hemisphere of Miranda, the innermost regular satellite of Uranus, with radius of 236 km. Projection is orthographic, centered on the south pole. Visible from left to right are Elsinore, Inverness, and Arden coronae. (Credit: NASA/Jet Propulsion Laboratory/Ted Stryk)
via science2.0

Physical constant is constant even in strong gravitational fields

Picture of the laser system with which the hydrogen molecules were investigated on earth. (Credit: LaserLaB VU University Amsterdam/Wim Ubachs)
An international team of physicists has shown that the mass ratio between protons and electrons is the same in weak and in very strong gravitational fields. Pictured above is the laser system with which the hydrogen molecules were investigated on earth. (Credit: LaserLaB VU University Amsterdam/Wim Ubachs)
via phys.org

NASA’s Maven spacecraft will arrive at Mars this weekend

via nypost

Shrink-wrapping spacesuits

The MIT BioSuit, a skintight spacesuit that offers improved mobility and reduced mass compared to modern gas-pressurized spacesuits. (Credit: Jose-Luis Olivares/MIT)
The MIT BioSuit, a skintight spacesuit that offers improved mobility and reduced mass compared to modern gas-pressurized spacesuits. (Credit: Jose-Luis Olivares/MIT)
via mit

Physics in the News

Wednesday, September, 17, 2014

Dwarf galaxy’s ‘giant dark heart’: Supermassive black hole spotted in a star cluster 500 times smaller than Milky Way

via utah.edu

Penn State team helps explain mystery of rare five-hour space explosion

The X-ray image from the Swift X-ray Telescope of the gamma-ray burst GRB 130925. The white object in the center is the gamma-ray burst.  The large diffuse region to the right is a cluster of galaxies. The other objects are X-ray-emitting celestial objects, most likely supermassive black holes at the centers of distant galaxies. The full image is approximately the size of the full moon. (Credit: Phil Evans/ University of Leicester)
The X-ray image from the Swift X-ray Telescope of the gamma-ray burst GRB 130925. The white object in the center is the gamma-ray burst. The large diffuse region to the right is a cluster of galaxies. The other objects are X-ray-emitting celestial objects, most likely supermassive black holes at the centers of distant galaxies. The full image is approximately the size of the full moon. (Credit: Phil Evans/ University of Leicester)
via psu

Violent origins of disc galaxies probed by ALMA

via spacefellowship

Ambulance-chasing Large Hadron Collider collisions

via theguardian

Neutrino experiment that reaches for the sun has Princeton roots

The Borexino collaboration, which announced the detection of an elusive solar neutrino in August, involved several scientific contributions from Princeton over its 25-year history. The detector consists of two massive transparent nylon balloons filled with a petroleum-based liquid called "scintillator," which emits a flash of light when it detects a neutrino. These flashes are picked up by an array of sensors embedded in a stainless steel sphere that surrounds the balloons. (Credit: Borexino collaboration)
The Borexino collaboration, which announced the detection of an elusive solar neutrino in August, involved several scientific contributions from Princeton over its 25-year history. The detector consists of two massive transparent nylon balloons filled with a petroleum-based liquid called “scintillator,” which emits a flash of light when it detects a neutrino. These flashes are picked up by an array of sensors embedded in a stainless steel sphere that surrounds the balloons. (Credit: Borexino collaboration)
via princeton

Synopsis: Relativity is right on time, again

The experiment effectively measures the shift in the laser frequencies relative to what these transition frequencies are for ions at rest. The combination of two frequency shifts eliminates uncertain parameters and allows the team to validate the time dilation prediction to a few parts per billion, improving on previous limits. The result complements other Lorentz violation tests that use higher precision atomic clocks but much slower relative velocities.  (Credit: Botermann, et al., Schirber)
The experiment effectively measures the shift in the laser frequencies relative to what these transition frequencies are for ions at rest. The combination of two frequency shifts eliminates uncertain parameters and allows the team to validate the time dilation prediction to a few parts per billion, improving on previous limits. The result complements other Lorentz violation tests that use higher precision atomic clocks but much slower relative velocities. (Credit: Botermann, et al., Schirber)
via aps.org

Dark Matter as the “OS” of the Universe –“It’s a quantum fluid governing the formation of the structure of the cosmos”

The image above is a comparison of the radial density profiles of the galaxies which the researchers have created by displaying the soliton in the centre of each galaxy with a halo surrounding it. The solitons are broader but have less mass in the smaller galaxies. (Credit: /kipac.stanford.edu/kipac/media)
The image above is a comparison of the radial density profiles of the galaxies which the researchers have created by displaying the soliton in the centre of each galaxy with a halo surrounding it. The solitons are broader but have less mass in the smaller galaxies. (Credit: /kipac.stanford.edu/kipac/media)
via dailygalaxy

No, the ‘God Particle’ Is Not Going to Kill Us All

via boston

9,096 Stars in the Sky – Is That All?

The sky facing south at nightfall in late September from a dark, light-pollution-free site with stars visible to magnitude 6.5, the naked eye limit. (Credit: Stellarium)
The sky facing south at nightfall in late September from a dark, light-pollution-free site with stars visible to magnitude 6.5, the naked eye limit. (Credit: Stellarium)
via skyandtelescope

Quantum entanglement and superconductivity: Live Webcast delves into “spooky action at a distance”

Artistic rendering of the generation of an entangled pair of photons by spontaneous parametric down-conversion as a laser beam passes through a nonlinear crystal. Inspired by an image in Dance of the Photons. (Credit: A. Zeilinger)
Artistic rendering of the generation of an entangled pair of photons by spontaneous parametric down-conversion as a laser beam passes through a nonlinear crystal. Inspired by an image in Dance of the Photons. (Credit: A. Zeilinger)
via newswise

Physics in the News

Tuesday, September 16, 2014

Cornell theorists continue the search for supersymmetry

The Tevatron, the particle accelerator used to find the oscillating Bs meson, has huge detectors surrounded by a cylindrical 'tracking chamber', shown here. (Credit: Fermilab)
The Tevatron, the particle accelerator used to find the oscillating Bs meson, has huge detectors surrounded by a cylindrical ‘tracking chamber’, shown here. (Credit: Fermilab)
via cornell

Planets with oddball orbits like Mercury could host life

On Mercury a solar day is about 176 Earth days long. During its first Mercury solar day in orbit the MESSENGER spacecraft imaged nearly the entire surface of Mercury to generate a global monochrome map at 250 meters per pixel resolution and a 1 kilometer per pixel resolution color map. (Credit: NASA/JHU APL/CIW)
On Mercury a solar day is about 176 Earth days long. During its first Mercury solar day in orbit the MESSENGER spacecraft imaged nearly the entire surface of Mercury to generate a global monochrome map at 250 meters per pixel resolution and a 1 kilometer per pixel resolution color map. (Credit: NASA/JHU APL/CIW)
via phys.org

Neutrino trident production may offer powerful probe of new physics

Parameter space for the Z’ gauge boson. The light gray area is excluded at 95% C.L. by the CCFR measurement of the neutrino trident cross section. The dark gray region with the dotted contour is excluded by measurements of the SM Z boson decay to four leptons at the LHC. The purple region is the area favored by the muon g-2 discrepancy that has not yet been ruled out, but future high-energy neutrino experiments are expected to be highly sensitive to this low-mass region. (Credit: Altmannshofer, et al. ©2014 American Physical Society)
Parameter space for the Z’ gauge boson. The light gray area is excluded at 95% C.L. by the CCFR measurement of the neutrino trident cross section. The dark gray region with the dotted contour is excluded by measurements of the SM Z boson decay to four leptons at the LHC. The purple region is the area favored by the muon g-2 discrepancy that has not yet been ruled out, but future high-energy neutrino experiments are expected to be highly sensitive to this low-mass region. (Credit: Altmannshofer, et al. ©2014 American Physical Society)
via phys.org

Viewpoint: Observing the great spin and orbital swap

The researchers observed for the first time coherent oscillations between two spin states: |e↑,g↓〉⇔|e↓,g↑〉. From the oscillation frequency, they determine the spin-exchange interaction strength. (Credit: APS/Ana Maria Rey)
The researchers observed for the first time coherent oscillations between two spin states: |e↑,g↓〉⇔|e↓,g↑〉. From the oscillation frequency, they determine the spin-exchange interaction strength. (Credit: APS/Ana Maria Rey)
via physics.aps

NASA inspector general blasts asteroid detection program

NASA has found about 95 per cent of the largest and potentially most destructive asteroids, those measuring about one kilometre or larger in diameter, but only 10 per cent of those 140 metres or larger in diameter. (NASA/JPL-Caltech/Canadian Press)
NASA has found about 95 per cent of the largest and potentially most destructive asteroids, those measuring about one kilometre or larger in diameter, but only 10 per cent of those 140 metres or larger in diameter. (NASA/JPL-Caltech/Canadian Press)
via cbslocal

Solar System Simulation Reveals Planetary Mystery

A montage of the planets and some of the moons in our solar system, not to scale. (Credit: NASA/JPL)
A montage of the planets and some of the moons in our solar system, not to scale. (Credit: NASA/JPL)
via spacedaily

Scientists explore landscape of absolute zero to probe quantum phase transitions

Rendering of the near–perfect crystal structure of the yttrium–iron–aluminum compound used in the study. The two–dimensional layers of the material allowed the scientists to isolate the magnetic ordering that emerged near absolute zero. (Credit:Brookhaven National Laboratory)
Rendering of the near–perfect crystal structure of the yttrium–iron–aluminum compound used in the study. The two–dimensional layers of the material allowed the scientists to isolate the magnetic ordering that emerged near absolute zero. (Credit:Brookhaven National Laboratory)
via azoquantum

 Ultrahard fullerite is almost twice as hard as diamond but new synthesis works at room temperature and lower pressure

Diamond anvils malformed during synthesis of ultrahard fullerite. Note the dent in the center. (Credit: Moscow Institute of Physics and Technology)
Diamond anvils malformed during synthesis of ultrahard fullerite. Note the dent in the center. (Credit: Moscow Institute of Physics and Technology)
via nextbigfuture

Calling all amateur astronomers

via skyandtelescope