Recent proposals postulate the existence of a “firewall” at the event horizon that may incinerate an infalling observer. These proposals face an apparent paradox if a freely falling observer detects nothing special in the vicinity of the horizon. (Credit: Moffat, Toth, Feild)
via mathoverflow
Google is going beyond using other people’s hardware. “With an integrated hardware group, the Quantum AI team at Google will now be able to implement and test new designs for quantum optimization and inference processors based on recent theoretical progress and insights from the D-Wave quantum annealing architecture,” says Hartmut Neven, Google’s Director of Engineering. (Credit: E. Lucero(UCSB), Lardinois)
via techcrunch
The spook and the weirdness, they stand in for non-locality and contextuality, they replace correlations and entanglement, pure and mixed states, non-commutativity, error correction, path integrals or post-selection. Unfortunately, all too often the technical vocabulary is entirely absent rather than briefly introduced. This makes it very difficult for interested readers to dig deeper into the topic. (Credit: C. Reed, S. Hossensfelder)
via backreaction
This computer simulation shows a collision of two streams of interstellar gas, leading to gravitational collapse of the gas and the formation of a star cluster at the center. In this image, the gas streams were labeled with blue and red “tracer dyes,” and the purple color indicates thorough mixing of the two gas streams during the collapse. (Credit: Y. Feng and M. Krumholz)
via phys
Scientists at the Vienna University of Technology have been able to change the properties of quartz glass into metal for very brief moments using laser pulses. (Credit: Vienna University of Technology)
via pbs
Interfaces between solid materials are surfaces with intricate, internal structure (shown on the left). To control that structure, and to use it for specific applications, researchers model it a simplified way (shown on the right). (Credit: Niaz Abdolrahim and Jose-Luis Olivares/MIT)
via mit
(29075) 1950 DA is a near-Earth asteroid. Among asteroids more than 1 km in diameter, it is notable for having the highest known probability of impacting Earth. (Credit: Stocktrek Images Inc./Alamy)
via scientificamerican
The Fermilab Holometer is a new kind of instrument designed to study the quantum character of space itself. It measures the quantum coherence of location with unprecedented precision. (Credit: Fermi)
via fermi
Three consecutive images of comet C/1979 Q1 plunging into the solar atmosphere on August 30, 1979. In these SOLWIND coronagraph images, the Sun is masked behind the solid disk in the center of the image. (Credit: NRL)
via planetary
Before the big explosion: The artist’s impression shows a binary star system where mass is transferred from a companion to a white dwarf. As soon as sufficient matter has collected on the surface of the dwarf star, this can trigger a nuclear explosion which in turn ignites the catastrophic nuclear burning and destroys the white dwarf – a type Ia supernova flares up. (Credit: ESA, Justyn R. Maund)
via newscientist
Director of distilling, Bill Lumsden. Ardbeg Scottish whisky was sent into space three years ago in an experiment looking at the impact of gravity on how it matures. It will return to Earth September 12th. (Credit: Paul Dodds/Ardbeg/PA)
via theguardian
NASA has warned that a new sunspot spewing powerful X-class flares is beginning to rotate to a position directly in line with Earth. (Credit: NASA)
via austriantribune
In the past decade an extraordinary claim has captivated cosmologists: that the expanding universe we see around us is not the only one; that billions of other universes are out there, too. (Credit: Slim Films, Ellis)
via scientificamerican
Neutron-rich magnesium nuclei have a neutron halo that extends beyond the tightly packed core of the nucleus. (Credit: K. Yoneda, RIKEN Nishina Center for Accelerator-Based Science)
via phys.org
On August 30th, 1984, the space shuttle Discovery launched on its first voyage to space. It wasn’t the first, but over the next 27 years it became the undeniable king of NASA’s shuttle program. (Credit: NASA)
via gizmodo
This image shows observations of a newly discovered galaxy core dubbed GOODS-N-774, taken by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys. The core is marked by the box inset, overlaid on a section of the Hubble GOODS-N, or GOODS North, field (Great Observatories Origins Deep Survey). (Credit: NASA, ESA)
via phys.org
The moment of detonation of a Type 1a supernova is modeled. This situation arises when a white dwarf star has accreted mass from a binary partner to a point when gravitational forces overcome the outward electron degeneracy pressure. The star collapses and it is thought that carbon fusion is initiated in the core, creating a supernova. (Credit: Argonne National Laboratory)
White Dwarf No More – The Type 1a supernova proceeds in the simulation, ripping through the white dwarf star. The star is completely destroyed. Around 1-2 × 1044 Joules of energy is released from Type 1a supernovae, ejecting matter and shock waves traveling at velocities of 3-12,000 miles per second (approximately 2-7% the speed of light). (Credit: Argonne National Laboratory)
Complex Fluid Mechanics – Detailed visualizations of the nuclear combustion inside a supernova. The calculations are based on fluid mechanics, showing how the explosion rips through the star. (Credit: Argonne National Laboratory)
Cosmic rays can help scientists do something no one else can: safely image the interior of the nuclear reactors at the Fukushima Daiichi plant. In the Los Alamos National Laboratory, postdoc Elena Guardincerri, right, and undergraduate research assistant, Shelby Fellows, prepare a lead hemisphere inside a muon tomography machine. (Credit: Los Alamos National Laboratory, Tuttle)
via symmetrymagazine
This artist’s impression shows a possible mechanism for a Type Ia supernova. Astronomers have shown that dead stars known as white dwarfs can re-ignite and explode as supernovas. (Credit: NASA)via bbc
llustration of data from the Spitzer Space Telescope, showing the massive increase in dust around the star NGC 2547-ID8, thought to be the result of an asteroid collision. Image (Credit: NASA/JPL-Caltech/University of Arizona)
via americaspace
A plot showing a spin up, spin down, and the resulting spin polarized population of electrons. Inside a spin injector, the polarization is constant, while outside the injector, the polarization decays exponentially to zero as the spin up and down populations go to equilibrium. (Credit SA3.0)
via phys.org
Finding clouds of water floating in the atmosphere of an alien world is a significant find. Now, astronomers have reported preliminary findings that water clouds have been detected in the atmosphere of a brown dwarf, a mere 7.3 light-years from Earth. (Credit: NASA, JPL-Caltech, O’neil)
via discovery
NASA mechanical engineer, Brian Trease, worked with Brigham Young University doctoral student Shannon Zirbel, and collaborated with origami expert Robert Lang, who has long been active in promoting it in science, and BYU professor Larry Howel, to combine different traditional folds for an 82-foot solar array that whirls down to 8.9 feet. (Credit: BYU, Meier)
via hyperallergic
“If we find a noise we can’t get rid of, we might be detecting something fundamental about nature – a noise that is intrinsic to space-time,” said Physicist Aaron Choi, the holometer project’s lead scientist. (Credit: NASA, ESA)
via interactions
In this picture, which combines views from Hubble and the Keck-II telescope on Hawaii (using adaptive optics), you can see a foreground galaxy that is acting as the gravitational lens. The galaxy resembles how our home galaxy, the Milky Way, would appear if seen edge-on. But around this galaxy there is an almost complete ring — the smeared out image of a star-forming galaxy merger far beyond. (Credit: NASA, ESA)
via spacetelescope
With a circumference of 52km, the “Higgs Factory” would be almost twice the size of Europe’s equivalent, and significantly more powerful. The Chinese said it is due to be completed by 2028. Image above is the Large Hadron Collider. (Credit: Getty)
via cityam
This diagram shows how the effect of gravitational lensing around a normal galaxy focuses the light coming from a very distant star-forming galaxy merger to created a distorted, but brighter view. (Credit: ESA/ESO/M. Kornmesser)
via washingtonpost
As seen under an optical microscope, the heterostructures have a triangular shape. The two different monolayer semiconductors can be recognized through their different colors. (Credit: U of Washington)
via phys.org
“It’s the most distant object for which the spin has been directly measured. The universe is about 13.7 billion years old, so this is going significantly back towards when the epoch of furious galaxy formation was happening,” says, Astrophysicist, Mark Reynolds.
via motherboard