This image shows observations of a newly discovered galaxy core dubbed GOODS-N-774, taken by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys. The core is marked by the box inset, overlaid on a section of the Hubble GOODS-N, or GOODS North, field (Great Observatories Origins Deep Survey). (Credit: NASA, ESA)
via phys.org
The moment of detonation of a Type 1a supernova is modeled. This situation arises when a white dwarf star has accreted mass from a binary partner to a point when gravitational forces overcome the outward electron degeneracy pressure. The star collapses and it is thought that carbon fusion is initiated in the core, creating a supernova. (Credit: Argonne National Laboratory)
White Dwarf No More – The Type 1a supernova proceeds in the simulation, ripping through the white dwarf star. The star is completely destroyed. Around 1-2 × 1044 Joules of energy is released from Type 1a supernovae, ejecting matter and shock waves traveling at velocities of 3-12,000 miles per second (approximately 2-7% the speed of light). (Credit: Argonne National Laboratory)
Complex Fluid Mechanics – Detailed visualizations of the nuclear combustion inside a supernova. The calculations are based on fluid mechanics, showing how the explosion rips through the star. (Credit: Argonne National Laboratory)
Cosmic rays can help scientists do something no one else can: safely image the interior of the nuclear reactors at the Fukushima Daiichi plant. In the Los Alamos National Laboratory, postdoc Elena Guardincerri, right, and undergraduate research assistant, Shelby Fellows, prepare a lead hemisphere inside a muon tomography machine. (Credit: Los Alamos National Laboratory, Tuttle)
via symmetrymagazine
This artist’s impression shows a possible mechanism for a Type Ia supernova. Astronomers have shown that dead stars known as white dwarfs can re-ignite and explode as supernovas. (Credit: NASA)via bbc
llustration of data from the Spitzer Space Telescope, showing the massive increase in dust around the star NGC 2547-ID8, thought to be the result of an asteroid collision. Image (Credit: NASA/JPL-Caltech/University of Arizona)
via americaspace
A plot showing a spin up, spin down, and the resulting spin polarized population of electrons. Inside a spin injector, the polarization is constant, while outside the injector, the polarization decays exponentially to zero as the spin up and down populations go to equilibrium. (Credit SA3.0)
via phys.org