The Scientific Method: Defending the integrity of physics

Is Science Undermining Itself?

by George Ellis & Joe Silk
Credit: Saturday Morning Breakfast Cereal
(Credit: Saturday Morning Breakfast Cereal)

This year, debates in physics circles took a worrying turn. Faced with difficulties in applying fundamental theories to the observed Universe, some researchers called for a change in how theor­etical physics is done. They began to argue — explicitly — that if a theory is sufficiently elegant and explanatory, it need not be tested experimentally, breaking with centuries of philosophical tradition of defining scientific knowledge as empirical. We disagree. As the philosopher of science Karl Popper argued: a theory must be falsifiable to be scientific.

Chief among the ‘elegance will suffice’ advocates are some string theorists. Because string theory is supposedly the ‘only game in town’ capable of unifying the four funda­mental forces, they believe that it must con­tain a grain of truth even though it relies on extra dimensions that we can never observe. Some cosmologists, too, are seek­ing to abandon experimental verification of grand hypotheses that invoke imperceptible domains such as the kaleidoscopic multi­verse (comprising myriad universes), the ‘many worlds’ version of quantum reality (in which observations spawn parallel branches of reality) and pre-Big Bang concepts.

These unprovable hypotheses are quite different from those that relate directly to the real world and that are testable through observations — such as the standard model of particle physics and the existence of dark matter and dark energy. As we see it, theor­etical physics risks becoming a no-­man’s­ land between mathematics, physics and philosophy that does not truly meet the requirements of any.

The issue of testability has been lurking for a decade. String theory and multiverse theory have been criticized in popular books and articles, including some by one of us (G.E.). In March, theorist Paul Steinhardt wrote in this journal that the the­ory of inflationary cosmology is no longer scientific because it is so flexible that it can accommodate any observational result. Theorist and philosopher Richard Dawid and cosmologist Sean Carroll have coun­tered those criticisms with a philosophical case to weaken the testability requirement for fundamental physics.

We applaud the fact that Dawid, Carroll and other physicists have brought the problem out into the open. But the drastic step that they are advocating needs careful debate. This battle for the heart and soul of physics is opening up at a time when scien­tific results — in topics from climate change to the theory of evolution — are being ques­tioned by some politicians and religious fundamentalists. Potential damage to public confidence in science and to the nature of fundamental physics needs to be contained by deeper dialogue between scientists and philosophers.

STRING THEORY

Is String Theory in trouble?(Credit: xkcd.com)
Is String Theory in trouble? (Credit: xkcd.com)

String theory is an elaborate proposal for how minuscule strings (one­-dimen­sional space entities) and membranes (higher­-dimensional extensions) existing in higher­-dimensional spaces underlie all of physics. The higher dimensions are wound so tightly that they are too small to observe at energies accessible through collisions in any practicable future particle detector.

Some aspects of string theory can be tested experimentally in principle. For example, a hypothesized symmetry between fermions and bosons central to string theory — super­ symmetry — predicts that each kind of particle has an as-­yet­-unseen partner. No such partners have yet been detected by the Large Hadron Collider at CERN, Europe’s particle­ physics laboratory near Geneva, Switzer­land, limiting the range of energies at which super-symmetry might exist. If these partners continue to elude detection, then we may never know whether they exist. Proponents could always claim that the particles’ masses are higher than the energies probed.

Cosmic String Animation (Credit: Anderson Institute)
This is the QCD String Model “Lava Lamp.” It is an excellent animation of the 4 dimensional structure of the long-distance aspects of the QCD vacuum. (Credit: Derek B. Leinweber)

Dawid argues that the veracity of string theory can be established through philo­sophical and probabilistic arguments about the research process. Citing Bayesian analysis, a statistical method for inferring the likelihood that an explanation fits a set of facts, Dawid equates confirmation with the increase of the probability that a theory is true or viable. But that increase of prob­ ability can be purely theoretical. Because “no­ one has found a good alternative” and “theories without alternatives tended to be viable in the past”, he reasons that string theory should be taken to be valid.

In our opinion, this is moving the goalposts. Instead of belief in a scientific theory increasing when observational evi­dence arises to support it, he suggests that theoretical discoveries bolster belief. But conclusions arising logically from math­ematics need not apply to the real world. Experiments have proved many beauti­ful and simple theories wrong, from the steady ­state theory of cosmology to the SU(5) Grand Uni­fied Theory of par­ticle physics, which aimed to unify the electro-weak force and the strong force. The idea that preconceived truths about the world can be inferred beyond established facts (inductiv­ism) was overturned by Popper and other twentieth­ century philosophers.

We cannot know that there are no alter­ native theories. We may not have found them yet. Or the premise might be wrong. There may be no need for an overarching theory of four fundamental forces and particles if gravity, an effect of space-­time curvature, differs from the strong, weak and electromagnetic forces that govern particles. And with its many variants, string theory is not even well defined: in our view, it is a promissory note that there might be such a unified theory.

MANY MULTIVERSES

multi
(Credit: Wikipedia)

The multiverse is motivated by a puzzle: why fundamental constants of nature, such as the fine­-structure constant that characterizes the strength of electromagnetic interactions between particles and the cosmological constant associated with the acceleration of the expansion of the Universe, have values that lie in the small range that allows life to exist. Multiverse theory claims that there are billions of unobservable sister universes out there in which all possible values of these constants can occur. So somewhere there will be a bio-­friendly universe like ours, however improbable that is.

Some physicists consider that the multi­verse has no challenger as an explanation of many otherwise bizarre coincidences. The low value of the cosmological constant — known to be 120 factors of 10 smaller than the value predicted by quantum field theory — is difficult to explain, for instance.

Earlier this year, championing the multi­verse and the many­ worlds hypothesis, Carroll dismissed Popper’s falsifiability criterion as a “blunt instrument” (go.nature.com/nuj39z). He offered two other requirements: a scientific theory should be “definite” and “empirical”. By definite, Carroll means that the theory says “something clear and unambiguous about how reality functions”. By empirical, he agrees with the customary definition that a theory should be judged a success or failure by its ability to explain the data.

He argues that inaccessible domains can have a “dramatic effect” in our cosmic back­ yard, explaining why the cosmological con­stant is so small in the part we see. But in multiverse theory, that explanation could be given no matter what astronomers observe. All possible combinations of cosmological parameters would exist somewhere, and the theory has many variables that can be tweaked. Other theories, such as uni-modular gravity, a modified version of Einstein’s general theory of relativity, can also explain why the cosmological constant is not huge.

Some people have devised forms of multi­verse theory that are susceptible to tests: physicist Leonard Susskind’s version can be falsified if negative spatial curvature of the Universe is ever demonstrated. But such a finding would prove nothing about the many other versions. Fundamentally, the multi­ verse explanation relies on string theory, which is as yet unverified, and on speculative mechanisms for realizing different physics in different sister universes. It is not, in our opinion, robust, let alone testable.

Image by Juergen Faelchle / Shutterstock
(Credit: Juergen Faelchle / Shutterstock)

The many-­worlds theory of quantum reality posed by physicist Hugh Everett is the ultimate quantum multiverse, where quantum probabilities affect the mac­roscopic. According to Everett, each of Schrodinger’s famous cats, the dead and the live, poisoned or not in its closed box by random radioactive decays, is real in its own universe. Each time you make a choice, even one as mundane as whether to go left or right, an alternative universe pops out of the quantum vacuum to accommodate the other action.

Billions of universes — and of galaxies and copies of each of us — accumulate with no possibility of communication between them or of testing their reality. But if a duplicate self exists in every multiverse domain and there are infinitely many, which is the real ‘me’ that I experience now? Is any version of oneself preferred over any other? How could ‘I’ ever know what the ‘true’ nature of real­ity is if one self favours the multiverse and another does not?

In our view, cosmologists should heed mathematician David Hilbert’s warning: although infinity is needed to complete mathematics, it occurs nowhere in the physi­cal Universe.

PASS THE TEST

We agree with theoretical physicist Sabine Hossenfelder: post­empirical science is an oxymoron (go.nature.com/p3upwp). Theories such as quantum mechanics and relativity turned out well because they made predictions that survived testing. Yet numerous his­torical examples point to how, in the absence of adequate data, elegant and compelling ideas led researchers in the wrong direction, from Ptolemy’s geocen­tric theories of the cosmos to Lord Kel­vin’s ‘vortex theory’ of the atom and Fred Hoyle’s perpetual steady-­state Universe. [Responce by S. Hossenfelder:  via medium.com]

“Image illustrating a phenomenologist after
reading a philosopher go on about
empiricism.” (Credit: Sabine Hossenfelder at Backreaction)

The consequences of over-claiming the significance of certain theories are pro­ found — the scientific method is at stake (go.nature.com/hh7mm6). To state that a theory is so good that its existence supplants the need for data and testing in our opinion risks misleading students and the public as to how science should be done and could open the door for pseudoscientists to claim that their ideas meet similar requirements.

What to do about it? Physicists, philosophers and other scientists should hammer out a new narrative for the sci­entific method that can deal with the scope of modern physics. In our view, the issue boils down to clarifying one question: what potential observational or experimental evidence is there that would persuade you that the theory is wrong and lead you to abandoning it? If there is none, it is not a scientific theory.

Such a case must be made in formal philosophical terms. A conference should be convened next year to take the first steps. People from both sides of the testability debate must be involved.

(Credit: Unknown)
(Credit: Vasava)

In the meantime, journal editors and publishers could assign speculative work to other research categories — such as mathematical rather than physical cos­mology — according to its potential testability. And the domination of some physics departments and institutes by such activities could be rethought.

The imprimatur of science should be awarded only to a theory that is testable. Only then can we defend science from attack.

Listen to Physicists Brian Green, professor of mathematics and physics, Columbia University, and Lee Smolin, faculty member, Perimeter Institute for Theoretical Physics Debate the Merits of String Theory (via NPR):

George Ellis is professor emeritus of applied mathematics at the University of Cape Town, South Africa.
Joe Silk is professor of physics at the Paris Institute of Astrophysics, France, and at Johns Hopkins University in Baltimore, Maryland, USA.

Copyright © 2014, Rights Managed by Nature Publishing Group, Permission to re-print license: 3531500151649

Physics in the News

Thursday, September 18, 2014

Have physicists just disproved string theory?

via mysteriousuniverse

New measurements from the AMS experiment unveil new territories in the flux of cosmic rays

Upper plot shows the slope of positron fraction measured by AMS (red circles) and a straight line fit at the highest energies (blue line). The data show that at 275±32 GeV the slope crosses zero. Lower plot shows the measured positron fraction as function of energy as well as the location of the maximum. (Credit CERN)
Upper plot shows the slope of positron fraction measured by AMS (red circles) and a straight line fit at the highest energies (blue line). The data show that at 275±32 GeV the slope crosses zero. Lower plot shows the measured positron fraction as function of energy as well as the location of the maximum. (Credit CERN)
via interactions

Nuclear spins control current in plastic LED: Step toward quantum computing, spintronic memory, better displays

An organic light-emitting diode, or OLED, glows orange when electrical current flows through it. University of Utah physicists used this kind of OLED -- basically a plastic LED instead of a conventional silicon semiconductor LED -- to show that they could read the subatomic 'spins' in the center or nuclei of hydrogen isotopes and use those spins to control current to the OLED. It is a step toward 'spintronic' devices such as faster computers, better data storage and more efficient OLEDs for TV, computer and cell phone displays. (Credit: Andy Brimhall, University of Utah)
An organic light-emitting diode, or OLED, glows orange when electrical current flows through it. It is a step toward ‘spintronic’ devices such as faster computers, better data storage and more efficient OLEDs for TV, computer and cell phone displays. (Credit: Andy Brimhall, University of Utah)
via phys.org

New technology that guides light through glass, developed by researchers from Polytechnique Montréal, could make our smartphones even smarter (PDF)

his revolutionary work could open up new real estate in the phone by embedding the glass with layer upon layer of sensors, including ones that could take your temperature, assess your blood sugar levels if you're diabetic or even analyze DNA.
This revolutionary work could open up new real estate in the phone by embedding the glass with layer upon layer of sensors, including ones that could take your temperature, assess your blood sugar levels if you’re diabetic or even analyze DNA. (Credit: Jerome Lapointe, Mathieu Gagné, Ming-Jun Li, and Raman Kashyap)
via mediacastermagazine

Milky Way mysteries mapped

The NASA/ESA Hubble Space Telescope has produced this finely detailed image of the beautiful spiral galaxy NGC 6384. This galaxy lies in the constellation of Ophiuchus (The Serpent Bearer), not far from the centre of the Milky Way on the sky. The positioning of NGC 6384 means that we have to peer at it past many dazzling foreground Milky Way stars that are scattered across this image. In 1971, one member of NGC 6384 stood out against these bright foreground stars when one of its stars exploded as a supernova. This was a Type Ia supernova, which occurs when a compact star that has ceased fusion in its core, called a white dwarf, increases its mass beyond a critical limit by gobbling up matter from a companion star. A runaway nuclear explosion then makes the star suddenly as bright as a whole galaxy. While many stars have already come to the ends of their lives in NGC 6384, in the centre, star formation is being fuelled by the galaxy’s bar structure; astronomers think such galactic bars funnel gas inwards, where it accumulates to form new stars. This picture was created from images take with the Wide Field Channel of Hubble’s Advanced Camera for Surveys. An image taken through a blue filter (F435W, coloured blue) was combined with an image taken through a near-infrared filter (F814W, coloured red). The total exposure times were 1050 s through each filter and the field of view is about 3 x 1.5 arcminutes. (Credit NASA)
The NASA/ESA Hubble Space Telescope has produced this finely detailed image of the beautiful spiral galaxy NGC 6384. This galaxy lies in the constellation of Ophiuchus (The Serpent Bearer), not far from the centre of the Milky Way on the sky. The positioning of NGC 6384 means that we have to peer at it past many dazzling foreground Milky Way stars that are scattered across this image. (Credit NASA/ESA)
via nationalgeographic

Very large telescope findings could force physicists to rethink the Big Bang

he problem was first identified some time ago. Dubbed the “cosmological lithium discrepancy,” the issue is very simple: everything we know about the Big Bang, supernovae, and the dynamics of stars, tells us that we should find a very specific concentration of lithium in the universe at large — but the universe actually seems to contain far less than that amount. (Credit: NASA, HUbble)
via geek.com

Asteroid tracking program has only 10 percent chance of success

European Space Agency's Giotto probe returned 2333 images during the Comet Halley encounter of March 13-14, 1986. All were recorded before the closest approach of 596 km at 00:03:02 UTC on 14 March 1986; the last from a distance of 1180 km, 15 seconds before closest approach. (Credit: MPAE, Dr H.U. Keller.
European Space Agency’s Giotto probe returned 2333 images during the Comet Halley encounter of March 13-14, 1986. All were recorded before the closest approach of 596 km at 00:03:02 UTC on 14 March 1986; the last from a distance of 1180 km, 15 seconds before closest approach. (Credit: MPAE, Dr H.U. Keller.
via inquisitr

Mystery U.S. government satellite is now in orbit

av_clio_l3917201432422AM63-1552x1940
An Atlas V rocket lifts off with the mysterious CLIO satellite. The rocket was carrying a satellite known only as CLIO, which it delivered into an unidentified (though probably geosynchronous) orbit. (Credit: ULA)
via forbes

Physics team uses pixel sensitivity of smartphone as a random generator for encryption

Random number generator setup: a camera is fully and homogeneously illuminated by a LED. The raw binary representation of pixel values are concatenated and passed through a randomness extractor. This extractor outputs quantum random numbers. (Credit: arXiv:1405.0435 [quant-ph])
Random number generator setup: a camera is fully and homogeneously illuminated by a LED. The raw binary representation of pixel values are concatenated and passed through a randomness extractor. This extractor outputs quantum random numbers. (Credit: arXiv:1405.0435 [quant-ph])
via phys.org

What is the Universe? Physics has some mind-bending answers

Science says the universe could be a hologram, a computer program, a black hole or a bubble—and there are ways to check (NASA, ESA, SAO, CXC, JPL-Caltech, and STScI)
Science says the universe could be a hologram, a computer program, a black hole or a bubble—and there are ways to check. (Credit: NASA, ESA, SAO, CXC, JPL-Caltech, and STScI)
via smithsonianmag
 

Physics in the News

Saturday, August 9, 2014

High-energy particle collisions reveal the unexpected

High-energy collisions between nuclei (white arrows) produce a cloud of elementary particles including quarks (red) and gluons (yellow). When gluons form an expansion front, they can produce a wall of matter called a color glass condensate, which eventually dissipates as the expansion continues. (Credit: © 2014 Larry McLerran, RIKEN–BNL Research Center)
High-energy collisions between nuclei (white arrows) produce a cloud of elementary particles including quarks (red) and gluons (yellow). When gluons form an expansion front, they can produce a wall of matter called a color glass condensate, which eventually dissipates as the expansion continues. (Credit: © 2014 Larry McLerran, RIKEN–BNL Research Center)
via phys

Watch water run UP a wall: Material that allows liquid to defy gravity could spell the end of windscreen wipers(VIDEO)

via cnet

Lonely supernovae may have been kicked out of their galaxies

University of Warwick researchers explain mystery of the loneliest supernovas. Compact binary star systems that have been thrown far from their host galaxy when one star of that pair became a neutron star, go through a second trauma when the remaining white dwarf star is eventually pulled onto the neutron star. (Credit: Mark A. Garlick / space-art.co.uk / University of Warwick)
University of Warwick researchers explain mystery of the loneliest supernovas. Compact binary star systems that have been thrown far from their host galaxy when one star of that pair became a neutron star, go through a second trauma when the remaining white dwarf star is eventually pulled onto the neutron star. (Credit: Mark A. Garlick / space-art.co.uk / University of Warwick)
via forbes

Whovian physicists claim TARDIS time travel is possible

While time travel may be theoretically possible, there are unfortunately several drawbacks to the researchers’ TARDIS concept. In order to function, it requires the use of exotic matter, which has yet to be shown to exist in our universe. Time travel would also have to violate classical mechanics, and in order to move in anything other than a circular direction in both time and space, more than one TARDIS curve would need to be constructed, raising the possibility of exiting the time vortex into a universe of anti-matter. (Credit: Bitbillions)
While time travel may be theoretically possible, there are unfortunately several drawbacks to the researchers’ TARDIS concept. In order to function, it requires the use of exotic matter, which has yet to be shown to exist in our universe. Time travel would also have to violate classical mechanics, and in order to move in anything other than a circular direction in both time and space, more than one TARDIS curve would need to be constructed, raising the possibility of exiting the time vortex into a universe of anti-matter.
(Credit: Bitbillions)
via inquisitr

String theory coming unstrung even among science writers?

A construction for computer visualization of certain complex curves" (Credit: CC BY-SA 2.5)
A construction for computer visualization of certain complex curves. Science journalist, Tom Siegfried, has been one of the most vociferous proponents of string theory for many, many years, but even his faith seems like it might be failing as the decades roll on. (Credit: CC BY-SA 2.5)
via columbia

Watch Pluto and Charon engage in their orbital dance

Animation of Pluto and Charon showing nearly a full rotation (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
Animation of Pluto and Charon showing nearly a full rotation (Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute)
via universetoday

Rosetta will teach us more about comets than we have learned in 50 years

Do you see a duck?  On August 6, millions of miles away from Earth, the firing of a rocket thruster signalled the end of a decade-long journey by a European spacecraft to reach its ultimate target – the 'duck' comet. (Credit: ESA/Rosetta/MPS)
Do you see a duck? On August 6, millions of miles away from Earth, the firing of a rocket thruster signalled the end of a decade-long journey by a European spacecraft to reach its ultimate target – the ‘duck’ comet. (Credit: ESA/Rosetta/MPS)
via phys

Nature’s magnifying glass: Gravitational lensing

A typical magnifying glass works by bending light (i.e. refraction) to a focus point, in this case your eye. In a similar way, gravitational lensing also works by bending light, but in this case it is mass from another galaxy bending the light. This galaxy that extends far into space causes light rays passing near and through its gravitational field to bend and again refocus onto a particular location. The more massive and dense the matter, the more bending and refracting. (Credit: Flickr, Hubble Heritage)
A typical magnifying glass works by bending light (i.e. refraction) to a focus point, in this case your eye. In a similar way, gravitational lensing also works by bending light, but in this case it is mass from another galaxy bending the light. This galaxy that extends far into space causes light rays passing near and through its gravitational field to bend and again refocus onto a particular location. The more massive and dense the matter, the more bending and refracting. (Credit: Flickr, Hubble Heritage)
via united-academics

Cassini prepares for its biggest remaining burn

This is an artists concept of Cassini during the Saturn Orbit Insertion (SOI) maneuver, just after the main engine has begun firing. (Credit: NASA/JPL)
This is an artists concept of Cassini during the Saturn Orbit Insertion (SOI) maneuver, just after the main engine has begun firing. (Credit: NASA/JPL)
via phys