What happens when you point a telescope designed to investigate black holes at the sun?

An image captured by NASA’s NuSTAR telescope, designed to investigate black holes, is the best-ever view of the sun in high-energy X-ray light.

X-rays stream off the sun in this image showing observations from by NASA's Nuclear Spectroscopic Telescope Array, or NuSTAR, overlaid on a picture taken by NASA's Solar Dynamics Observatory (SDO).This image shows that some of the hotter emission tracked by NuSTAR is coming from different locations in the active regions and the coronal loops than the cooler emission shown in the SDO image.  (Credit: NASA/JPL-Caltech )
This image shows that some of the hotter emission tracked by NuSTAR is coming from different locations in the active regions and the coronal loops than the cooler emission shown in the SDO image. (Credit: NASA/JPL-Caltech

For the first time, a mission designed to set its eyes on black holes and other objects far from our solar system has turned its gaze back closer to home, capturing images of our sun. NASA’s Nuclear Spectroscopic Telescope Array, or NuSTAR, has taken its first picture of the sun, producing the most sensitive solar portrait ever taken in high-energy X-rays.

“NuSTAR will give us a unique look at the sun, from the deepest to the highest parts of its atmosphere,” said David Smith, a solar physicist and member of the NuSTAR team at University of California, Santa Cruz.

NuSTAR spacecraft will allow astronomers to study the universe in high energy X-rays. Here it undergoes a solar array illumination test. Image tweeted Feb. 3, 2012. (Credit: NASA/NuStar)
NuSTAR spacecraft undergoes a solar array illumination test. Image tweeted Feb. 3, 2012. (Credit: NASA/NuStar)

Solar scientists first thought of using NuSTAR to study the sun about seven years ago, after the space telescope’s design and construction was already underway (the telescope launched into space in 2012). Smith had contacted the principal investigator, Fiona Harrison of the California Institute of Technology in Pasadena, who mulled it over and became excited by the idea.

“At first I thought the whole idea was crazy,” says Harrison. “Why would we have the most sensitive high energy X-ray telescope ever built, designed to peer deep into the universe, look at something in our own back yard?” Smith eventually convinced Harrison, explaining that faint X-ray flashes predicted by theorists could only be seen by NuSTAR.

nustar20120613-640
NASA’s NuSTAR and its rocket drop from the carrier “Stargazer” plane. (Credit: Orbital Sciences Corporation)

While the sun is too bright for other telescopes such as NASA’s Chandra X-ray Observatory, NuSTAR can safely look at it without the risk of damaging its detectors. The sun is not as bright in the higher-energy X-rays detected by NuSTAR, a factor that depends on the temperature of the sun’s atmosphere.

This first solar image from NuSTAR demonstrates that the telescope can in fact gather data about sun. And it gives insight into questions about the remarkably high temperatures that are found above sunspots — cool, dark patches on the sun. Future images will provide even better data as the sun winds down in its solar cycle.

“We will come into our own when the sun gets quiet,” said Smith, explaining that the sun’s activity will dwindle over the next few years.

With NuSTAR’s high-energy views, it has the potential to capture hypothesized nanoflares — smaller versions of the sun’s giant flares that erupt with charged particles and high-energy radiation. Nanoflares, should they exist, may explain why the sun’s outer atmosphere, called the corona, is sizzling hot, a mystery called the “coronal heating problem.” The corona is, on average, 1.8 million degrees Fahrenheit (1 million degrees Celsius), while the surface of the sun is relatively cooler at 10,800 Fahrenheit (6,000 degrees Celsius). It is like a flame coming out of an ice cube. Nanoflares, in combination with flares, may be sources of the intense heat.

If NuSTAR can catch nanoflares in action, it may help solve this decades-old puzzle.

“NuSTAR will be exquisitely sensitive to the faintest X-ray activity happening in the solar atmosphere, and that includes possible nanoflares,” said Smith.

What’s more, the X-ray observatory can search for hypothesized dark matter particles called axions. Dark matter is five times more abundant than regular matter in the universe. Everyday matter familiar to us, for example in tables and chairs, planets and stars, is only a sliver of what’s out there. While dark matter has been indirectly detected through its gravitational pull, its composition remains unknown.

In 1977, Frank Wilczek proposed the existence of a new type of elementary particle. He named it an “axion”, after a brand of detergent, because it cleaned up a profound physical problem. (Credit: indico.cern.ch)

It’s a long shot, say scientists, but NuSTAR may be able spot axions, one of the leading candidates for dark matter, should they exist. The axions would appear as a spot of X-rays in the center of the sun.

Meanwhile, as the sun awaits future NuSTAR observations, the telescope is continuing with its galactic pursuits, probing black holes, supernova remnants and other extreme objects beyond our solar system.

NASA's Nuclear Spectroscopic Telescope Array (NuSTAR) space telescope will launch in 2012 on a mission to seek out distant black holes like never before. Take a look at how the $165 million space telescope will launch and perform its mission (Credit:  in the SPACE.com)
NASA’s Nuclear Spectroscopic Telescope Array (NuSTAR) space telescope launched in 2012 on a mission to seek out distant black holes like never before.  (Credit: in the SPACE.com)
Credit: NuStar News at Caltech

Physics in the News

Thursday, September 18, 2014

Have physicists just disproved string theory?

via mysteriousuniverse

New measurements from the AMS experiment unveil new territories in the flux of cosmic rays

Upper plot shows the slope of positron fraction measured by AMS (red circles) and a straight line fit at the highest energies (blue line). The data show that at 275±32 GeV the slope crosses zero. Lower plot shows the measured positron fraction as function of energy as well as the location of the maximum. (Credit CERN)
Upper plot shows the slope of positron fraction measured by AMS (red circles) and a straight line fit at the highest energies (blue line). The data show that at 275±32 GeV the slope crosses zero. Lower plot shows the measured positron fraction as function of energy as well as the location of the maximum. (Credit CERN)
via interactions

Nuclear spins control current in plastic LED: Step toward quantum computing, spintronic memory, better displays

An organic light-emitting diode, or OLED, glows orange when electrical current flows through it. University of Utah physicists used this kind of OLED -- basically a plastic LED instead of a conventional silicon semiconductor LED -- to show that they could read the subatomic 'spins' in the center or nuclei of hydrogen isotopes and use those spins to control current to the OLED. It is a step toward 'spintronic' devices such as faster computers, better data storage and more efficient OLEDs for TV, computer and cell phone displays. (Credit: Andy Brimhall, University of Utah)
An organic light-emitting diode, or OLED, glows orange when electrical current flows through it. It is a step toward ‘spintronic’ devices such as faster computers, better data storage and more efficient OLEDs for TV, computer and cell phone displays. (Credit: Andy Brimhall, University of Utah)
via phys.org

New technology that guides light through glass, developed by researchers from Polytechnique Montréal, could make our smartphones even smarter (PDF)

his revolutionary work could open up new real estate in the phone by embedding the glass with layer upon layer of sensors, including ones that could take your temperature, assess your blood sugar levels if you're diabetic or even analyze DNA.
This revolutionary work could open up new real estate in the phone by embedding the glass with layer upon layer of sensors, including ones that could take your temperature, assess your blood sugar levels if you’re diabetic or even analyze DNA. (Credit: Jerome Lapointe, Mathieu Gagné, Ming-Jun Li, and Raman Kashyap)
via mediacastermagazine

Milky Way mysteries mapped

The NASA/ESA Hubble Space Telescope has produced this finely detailed image of the beautiful spiral galaxy NGC 6384. This galaxy lies in the constellation of Ophiuchus (The Serpent Bearer), not far from the centre of the Milky Way on the sky. The positioning of NGC 6384 means that we have to peer at it past many dazzling foreground Milky Way stars that are scattered across this image. In 1971, one member of NGC 6384 stood out against these bright foreground stars when one of its stars exploded as a supernova. This was a Type Ia supernova, which occurs when a compact star that has ceased fusion in its core, called a white dwarf, increases its mass beyond a critical limit by gobbling up matter from a companion star. A runaway nuclear explosion then makes the star suddenly as bright as a whole galaxy. While many stars have already come to the ends of their lives in NGC 6384, in the centre, star formation is being fuelled by the galaxy’s bar structure; astronomers think such galactic bars funnel gas inwards, where it accumulates to form new stars. This picture was created from images take with the Wide Field Channel of Hubble’s Advanced Camera for Surveys. An image taken through a blue filter (F435W, coloured blue) was combined with an image taken through a near-infrared filter (F814W, coloured red). The total exposure times were 1050 s through each filter and the field of view is about 3 x 1.5 arcminutes. (Credit NASA)
The NASA/ESA Hubble Space Telescope has produced this finely detailed image of the beautiful spiral galaxy NGC 6384. This galaxy lies in the constellation of Ophiuchus (The Serpent Bearer), not far from the centre of the Milky Way on the sky. The positioning of NGC 6384 means that we have to peer at it past many dazzling foreground Milky Way stars that are scattered across this image. (Credit NASA/ESA)
via nationalgeographic

Very large telescope findings could force physicists to rethink the Big Bang

he problem was first identified some time ago. Dubbed the “cosmological lithium discrepancy,” the issue is very simple: everything we know about the Big Bang, supernovae, and the dynamics of stars, tells us that we should find a very specific concentration of lithium in the universe at large — but the universe actually seems to contain far less than that amount. (Credit: NASA, HUbble)
via geek.com

Asteroid tracking program has only 10 percent chance of success

European Space Agency's Giotto probe returned 2333 images during the Comet Halley encounter of March 13-14, 1986. All were recorded before the closest approach of 596 km at 00:03:02 UTC on 14 March 1986; the last from a distance of 1180 km, 15 seconds before closest approach. (Credit: MPAE, Dr H.U. Keller.
European Space Agency’s Giotto probe returned 2333 images during the Comet Halley encounter of March 13-14, 1986. All were recorded before the closest approach of 596 km at 00:03:02 UTC on 14 March 1986; the last from a distance of 1180 km, 15 seconds before closest approach. (Credit: MPAE, Dr H.U. Keller.
via inquisitr

Mystery U.S. government satellite is now in orbit

av_clio_l3917201432422AM63-1552x1940
An Atlas V rocket lifts off with the mysterious CLIO satellite. The rocket was carrying a satellite known only as CLIO, which it delivered into an unidentified (though probably geosynchronous) orbit. (Credit: ULA)
via forbes

Physics team uses pixel sensitivity of smartphone as a random generator for encryption

Random number generator setup: a camera is fully and homogeneously illuminated by a LED. The raw binary representation of pixel values are concatenated and passed through a randomness extractor. This extractor outputs quantum random numbers. (Credit: arXiv:1405.0435 [quant-ph])
Random number generator setup: a camera is fully and homogeneously illuminated by a LED. The raw binary representation of pixel values are concatenated and passed through a randomness extractor. This extractor outputs quantum random numbers. (Credit: arXiv:1405.0435 [quant-ph])
via phys.org

What is the Universe? Physics has some mind-bending answers

Science says the universe could be a hologram, a computer program, a black hole or a bubble—and there are ways to check (NASA, ESA, SAO, CXC, JPL-Caltech, and STScI)
Science says the universe could be a hologram, a computer program, a black hole or a bubble—and there are ways to check. (Credit: NASA, ESA, SAO, CXC, JPL-Caltech, and STScI)
via smithsonianmag
 

Physics in the News

Wednesday, August 13, 2014

First robotic telescope captures clear images of exoplanet stars

via spectrum

What?! The universe appears to be missing some light

New data from the Hubble Space Telescope and computer simulations have revealed that the universe has much less ultraviolet light than previously thought. (Credit: Ben Oppenheimer and Juna Kollmeie)
New data from the Hubble Space Telescope and computer simulations have revealed that the universe has much less ultraviolet light than previously thought.
(Credit: Ben Oppenheimer and Juna Kollmeie)
via space

Here’s the world’s first robotics company to pledge not to make ‘killer robots’

Clearpath Robotics "Husky," an autonomous vehicle. (Credit: Clearpath Robotics)
“Husky,” an autonomous vehicle. (Credit: Clearpath Robotics)

via businessinsider

Planck’s mystery cosmic ‘cold spot’ may be an error

The European Space Agency's Planck space telescope mapped the cosmic microwave background. (Credit: ESA and the Planck Collaboration)
The European Space Agency’s Planck space telescope mapped the cosmic microwave background. (Credit: ESA and the Planck Collaboration)
via space

Proof confirmed of 400-year-old fruit-stacking problem

Now, a mathematician has announced the completion of an epic quest to formally prove the so-called Kepler conjecture. “An enormous burden has been lifted from my shoulders,” says Thomas Hales of the University of Pittsburgh, Pennsylvania, who led the work. “I suddenly feel ten years younger!” (Credit: Ray Tang/Rex)
via newscientist

Introducing this year’s underground astronauts

Astronauts will be working together, deep underground. (Credit: ESA—A. Romeo)
Astronauts will be working together, deep underground. (Credit: ESA—A. Romeo)
via phys

How to build a supermassive black hole in less than a billion years

This artist's rendering shows one possible configuration for a corona, but that its true shape is unknown. (Credit: NASA/JPL-Caltech)

via arstechnica

Physics in the News

Updated Thursday, June 5, 2014

60-year-old Prediction of Atomic Behavior Confirmed

Quantum_Physics_60-year-old_Prediction_of_Atomic_Behavior_Confirmed_ml
Researchers at Washington State University have used a super-cold cloud of atoms that behaves like a single atom to see a phenomenon predicted 60 years ago and witnessed only once since.
via scientificcomputing.com

Big Bang research blunder leaves multiverse theory in ruins, theoretical physicist claims

multiverse
Scientist says the search for the multiverse is not stymied
via www.independent.co.uk

A violent, complex scene of colliding galaxy clusters

MACSJ0717
Colliding galaxy clusters MACS J0717+3745, more than 5 billion light-years from Earth. Background is Hubble Space Telescope image; blue is X-ray image from Chandra, and red is VLA radio image.
via www.astronomy.com

Kapteyn b and c: Two Exoplanets Found Orbiting Kapteyn’s Star

image_1965_1-Kapteyn-b-c
This artistic representation shows the potentially habitable exoplanet Kapteyn b and the globular cluster Omega Centauri in the background. It is believed that this cluster is the remaining core of a dwarf galaxy that merged with our own Milky Way Galaxy billions of years ago bringing Kapteyn’s star along. Image credit: PHL / UPR Arecibo / Aladin Sky Atlas.
via www.sci-news.com

Light from huge explosion 12 billion years ago reaches Earth

observedbyte
Light from the explosion 12 billion years ago of a massive star at the end of its life reached Earth recently. An image of its peak afterglow, circled with blue and yellow, was captured by Southern Methodist University’s ROTSE-IIIb telescope at McDonald Observatory, Fort Davis, Texas. A bright star sits alongside the afterglow from GRB 140419A. Credit: ROTSE-IIIb, SMU
via phys.org

Miniature Digital Zenith Telescope For Astronomy And Geoscience

This shows the DZT-1 prototype and observation image. Credit: ©Science China Press
This shows the DZT-1 prototype and observation image. Credit: ©Science China Press
via technology.org

Powerful magnetic fields challenge black holes’ pull

zoom
A computer simulation of gas (in yellow) falling into a black hole (too small to be seen). Twin jets are also shown with magnetic field lines. Alexander Tchekhovskoy (LBNL)
via www.astronomy.com

Astronomers Find “Mega-Earth,” Most Massive Rocky Planet Yet

mega-earth-kepler-01_80397_990x742
Rocky world could be the first of an entirely new class of planet. An illustration of mega-Earth Rocky world could be the first of an entirely new class of planet. An illustration of mega-Earth The newly discovered ”mega-Earth” Kepler-10c dominates the foreground in this artist’s conception released by the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts on June 2, 2014.
via news.nationalgeographic.com

Penn science and art at the edge of space

Artacama
Penn astrophysicist Mark Devlin and Jackie Tileston, an associate professor of fine arts at PennDesign, collaborated on the ARTacama Project, the “highest known art installation in the world” three miles above sea level in the Chilean mountains.
www.upenn.edu