Physics in the News

Tuesday, September 16, 2014

Cornell theorists continue the search for supersymmetry

The Tevatron, the particle accelerator used to find the oscillating Bs meson, has huge detectors surrounded by a cylindrical 'tracking chamber', shown here. (Credit: Fermilab)
The Tevatron, the particle accelerator used to find the oscillating Bs meson, has huge detectors surrounded by a cylindrical ‘tracking chamber’, shown here. (Credit: Fermilab)
via cornell

Planets with oddball orbits like Mercury could host life

On Mercury a solar day is about 176 Earth days long. During its first Mercury solar day in orbit the MESSENGER spacecraft imaged nearly the entire surface of Mercury to generate a global monochrome map at 250 meters per pixel resolution and a 1 kilometer per pixel resolution color map. (Credit: NASA/JHU APL/CIW)
On Mercury a solar day is about 176 Earth days long. During its first Mercury solar day in orbit the MESSENGER spacecraft imaged nearly the entire surface of Mercury to generate a global monochrome map at 250 meters per pixel resolution and a 1 kilometer per pixel resolution color map. (Credit: NASA/JHU APL/CIW)
via phys.org

Neutrino trident production may offer powerful probe of new physics

Parameter space for the Z’ gauge boson. The light gray area is excluded at 95% C.L. by the CCFR measurement of the neutrino trident cross section. The dark gray region with the dotted contour is excluded by measurements of the SM Z boson decay to four leptons at the LHC. The purple region is the area favored by the muon g-2 discrepancy that has not yet been ruled out, but future high-energy neutrino experiments are expected to be highly sensitive to this low-mass region. (Credit: Altmannshofer, et al. ©2014 American Physical Society)
Parameter space for the Z’ gauge boson. The light gray area is excluded at 95% C.L. by the CCFR measurement of the neutrino trident cross section. The dark gray region with the dotted contour is excluded by measurements of the SM Z boson decay to four leptons at the LHC. The purple region is the area favored by the muon g-2 discrepancy that has not yet been ruled out, but future high-energy neutrino experiments are expected to be highly sensitive to this low-mass region. (Credit: Altmannshofer, et al. ©2014 American Physical Society)
via phys.org

Viewpoint: Observing the great spin and orbital swap

The researchers observed for the first time coherent oscillations between two spin states: |e↑,g↓〉⇔|e↓,g↑〉. From the oscillation frequency, they determine the spin-exchange interaction strength. (Credit: APS/Ana Maria Rey)
The researchers observed for the first time coherent oscillations between two spin states: |e↑,g↓〉⇔|e↓,g↑〉. From the oscillation frequency, they determine the spin-exchange interaction strength. (Credit: APS/Ana Maria Rey)
via physics.aps

NASA inspector general blasts asteroid detection program

NASA has found about 95 per cent of the largest and potentially most destructive asteroids, those measuring about one kilometre or larger in diameter, but only 10 per cent of those 140 metres or larger in diameter. (NASA/JPL-Caltech/Canadian Press)
NASA has found about 95 per cent of the largest and potentially most destructive asteroids, those measuring about one kilometre or larger in diameter, but only 10 per cent of those 140 metres or larger in diameter. (NASA/JPL-Caltech/Canadian Press)
via cbslocal

Solar System Simulation Reveals Planetary Mystery

A montage of the planets and some of the moons in our solar system, not to scale. (Credit: NASA/JPL)
A montage of the planets and some of the moons in our solar system, not to scale. (Credit: NASA/JPL)
via spacedaily

Scientists explore landscape of absolute zero to probe quantum phase transitions

Rendering of the near–perfect crystal structure of the yttrium–iron–aluminum compound used in the study. The two–dimensional layers of the material allowed the scientists to isolate the magnetic ordering that emerged near absolute zero. (Credit:Brookhaven National Laboratory)
Rendering of the near–perfect crystal structure of the yttrium–iron–aluminum compound used in the study. The two–dimensional layers of the material allowed the scientists to isolate the magnetic ordering that emerged near absolute zero. (Credit:Brookhaven National Laboratory)
via azoquantum

 Ultrahard fullerite is almost twice as hard as diamond but new synthesis works at room temperature and lower pressure

Diamond anvils malformed during synthesis of ultrahard fullerite. Note the dent in the center. (Credit: Moscow Institute of Physics and Technology)
Diamond anvils malformed during synthesis of ultrahard fullerite. Note the dent in the center. (Credit: Moscow Institute of Physics and Technology)
via nextbigfuture

Calling all amateur astronomers

via skyandtelescope

Physics in the News

Monday, September 15, 2014

Why do particle physicists demand 99.9999% certainty before they believe a new discovery?

"I confess that in my early in my career as a physicist I was rather cynical about sophisticated statistical tools, being of the opinion that “if any of this makes a difference, just get more data”. That is, if you do enough experiments, the confidence level will be so high that the exact statistical treatment you use to evaluate it is irrelevant." (Credit: Michael Slezak)
“I confess that in my early in my career as a physicist I was rather cynical about sophisticated statistical tools, being of the opinion that “if any of this makes a difference, just get more data”. That is, if you do enough experiments, the confidence level will be so high that the exact statistical treatment you use to evaluate it is irrelevant.” (Credit: Jon Butterworth)
via theguardian

Curtain closing on Higgs boson photon soap opera

It was the daytime soap opera of particle physics. But the final episode of the first season ends in an anticlimax. The Higgs boson's decay into pairs of photons – the strongest yet most confusing clue to the particle's existence – is looking utterly normal after all. (Credit: D. Moir/Reurters, M. Slezak)
It was the daytime soap opera of particle physics. But the final episode of the first season ends in an anticlimax. The Higgs boson’s decay into pairs of photons – the strongest yet most confusing clue to the particle’s existence – is looking utterly normal after all. (Credit: D. Moir/Reurters, M. Slezak)
via newscientist

Three’s a charm: NIST detectors reveal entangled photon triplets

NIST chip containing a single-photon detector was made of superconducting nanowires. Four chips like this were used in the experiment that entangled three photons.  (Credit: Verma/NIST)
NIST chip containing a single-photon detector was made of superconducting nanowires. Four chips like this were used in the experiment that entangled three photons. (Credit: Verma/NIST)
via extremetech

How to turn the Moon into a giant cosmic ray detector

The new plan, proposed by researchers at the University of Southampton in England, is to eavesdrop on the faint nanosecond radio signals sent our way when cosmic rays hit edges of the Moon at a near-tangent. (Credit J. Hewitt, astrobiology.aob.rs)
The new plan, proposed by researchers at the University of Southampton in England, is to eavesdrop on the faint nanosecond radio signals sent our way when cosmic rays hit edges of the Moon at a near-tangent. (Credit J. Hewitt, astrobiology.aob.rs)
via extremetech

Are ‘ghost waves’ behind quantum strangeness?

"The key question is whether a real quantum dynamics, of the general form suggested by de Broglie and the walking drops, might underlie quantum statistics," Bush said. "While undoubtedly complex, it would replace the philosophical vagaries of quantum mechanics with a concrete dynamical theory," said  John Bush of MIT. (Credit: D. Harris/MIT, M. Byrne)
“The key question is whether a real quantum dynamics, of the general form suggested by de Broglie and the walking drops, might underlie quantum statistics,” Bush said. “While undoubtedly complex, it would replace the philosophical vagaries of quantum mechanics with a concrete dynamical theory,” said John Bush of MIT. (Credit: D. Harris/MIT, M. Byrne)
via motherboard

Comet probe finds elements of life

A composite photo of comet 67P/C-G showing gases escaping from the ‘neck’. The first jets of dust were detected spurting from the comet as Rosetta approached it in August but detailed photographs weren’t available until last week. (Credit: Emily Lakdawalla/ESA)
A composite photo of comet 67P/C-G showing gases escaping from the ‘neck’. The first jets of dust were detected spurting from the comet as Rosetta approached it in August but detailed photographs weren’t available until last week. (Credit: Emily Lakdawalla/ESA)
via forbes

Saturn is making and destroying mini-moons all the time

PIA18420
The spacecraft captured the views between July 20 and July 22, 2014, as it departed Titan following a flyby. Cassini tracked the system of clouds as it developed and dissipated over Ligeia Mare during this two-day period. Measurements of the cloud motions indicate wind speeds of around 7 to 10 miles per hour (3 to 4.5 meters per second). (Credit: NASA, Cassini)
via smithsonianmag

ULA aims for top-secret CLIO launch tomorrow

via americaspace

Where to grab space debris

via yumanewsnow

ESA’s Gaia observatory locates its first Supernova

Less than two months after it first began repeatedly scanning the sky, the ESA’s Gaia space observatory has discovered its first supernova – a powerful stellar explosion that had occurred in a distant galaxy located some 500 million light-years from Earth, the agency announced on Friday.  The above is an artist’s impression of a Type Ia supernova – the explosion of a white dwarf locked in a binary system with a companion star. (Credit: ESA/ATG medialab/C. Carreau, Bednar)
Less than two months after it first began repeatedly scanning the sky, the ESA’s Gaia space observatory has discovered its first supernova – a powerful stellar explosion that had occurred in a distant galaxy located some 500 million light-years from Earth, the agency announced on Friday. The above is an artist’s impression of a Type Ia supernova – the explosion of a white dwarf locked in a binary system with a companion star. (Credit: ESA/ATG medialab/C. Carreau, Bednar)
via redorbit

Phosphorus a promising semiconductor

Grain boundaries are rows of defects that disrupt the electronic properties of two-dimensional materials like graphene, but new theory by scientists at Rice University shows no such effects in atomically flat phosphorus. That may make the material ideal for nano-electronic applications. (Credit: Evgeni Penev/Rice University)
Grain boundaries are rows of defects that disrupt the electronic properties of two-dimensional materials, like graphene, but a new theory by scientists at Rice University shows no such effects in atomically flat phosphorus. That may make the material ideal for nano-electronic applications. (Credit: Evgeni Penev/Rice University)
via energy-daily

Curiosity rover reaches long-term goal: a massive Martian mountain

via theverge

Universe may be an illusion or hologram?

To find out if the universe is a hologram, scientists at the U.S. Department of Energy’s Fermi National Accelerator Laboratory have powered up their exotic holographic inferometer, or Holometer. The results of the Fermilab E-990 experiment could indeed indicate that the nature of the universe is holographic. (Credit: Baskin, M. Freiberger)
To find out if the universe is a hologram, scientists at the U.S. Department of Energy’s Fermi National Accelerator Laboratory have powered up their exotic holographic inferometer, or Holometer. The results of the Fermilab E-990 experiment could indeed indicate that the nature of the universe is holographic. (Credit: Baskin, M. Freiberger)
via guardianlv

Can we survive the end of the Universe?

The ultimate fate of the universe depends on the nature of dark matter and dark energy, about which we know almost nothing. (Credit: NASA)
The ultimate fate of the universe depends on the nature of dark matter and dark energy, about which we know almost nothing. (Credit: NASA)
via mysteriousuniverse

Physics in the News

Saturday, September 6, 2014

Giant geysers on Jupiter’s icy moon mysteriously disappear

In 2013, huge active plumes containing water vapour being released from the surface of Jupiter’s moon Europa were discovered. This sensational find was made using the NASA/ESA Hubble Space Telescope. Europa has been a focus of extraterrestrial research for some time now, as there were clear indications that it harbors a liquid ocean beneath its icy crust. Now, it appears, the geysers have vanished. (Credit: K. Retherford, Southwest Research Institute, NASA/ESA/K.)
In 2013, huge active plumes containing water vapour being released from the surface of Jupiter’s moon Europa were discovered. This sensational find was made using the NASA/ESA Hubble Space Telescope. Europa has been a focus of extraterrestrial research for some time now, as there were clear indications that it harbors a liquid ocean beneath its icy crust. Now, it appears, the geysers have vanished. (Credit: K. Retherford, Southwest Research Institute, NASA/ESA/K.)
via dailygalaxy

Precisest natural clocks can be galactic GPS

A pulsar is the rapidly spinning and highly magnetized core left behind when a massive star explodes. Because only rotation powers their intense gamma-ray, radio and particle emissions, pulsars gradually slow as they age, and eventually cease their characteristic emissions. (Credit: F. Reddy of Goddard Space Flight Center, NASA)
A pulsar is the rapidly spinning and highly magnetized core left behind when a massive star explodes. Because only rotation powers their intense gamma-ray, radio and particle emissions, pulsars gradually slow as they age, and eventually cease their characteristic emissions. (Credit: F. Reddy of Goddard Space Flight Center, NASA)
via onislam

What does it feel like when everyone else finds the Higgs, and you don’t?

via theguardian

Mother of Higgs boson found in superconductors

A weird theoretical cousin of the Higgs boson, one that inspired the decades-long hunt for the elusive particle, has been properly observed for the first time. The discovery bookends one of the most exciting eras in modern physics. The above is a simulation of the production and dec (Credit: Slezak)
A weird theoretical cousin of the Higgs boson, one that inspired the decades-long hunt for the elusive particle, has been properly observed for the first time. The discovery bookends one of the most exciting eras in modern physics. The above is a simulation of the production and dec (Credit: Slezak)
via newscientist

MAVEN Mars Orbiter ideally poised to uniquely map Comet Siding Spring composition – Exclusive interview with Principal Investigator Bruce Jakosky

MAVEN is NASA’s next Mars orbiter and launched on Nov. 18, 2014 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars and observing Comet Siding Spring. (Credit: Ken Kremer)
MAVEN is NASA’s next Mars orbiter and launched on Nov. 18, 2014 from Cape Canaveral, Florida. It will study the evolution of the Red Planet’s atmosphere and climate. Universe Today visited MAVEN inside the clean room at the Kennedy Space Center. With solar panels unfurled, this is exactly how MAVEN looks when flying through space and circling Mars and observing Comet Siding Spring. (Credit: Ken Kremer)
via universetoday

Cosmologists probe beyond the Big Bang

“This is a time of very rapid advances in the field.  You don’t know on any given day what new discovery you’re going to see posted that night on arXiv," said Liam McAllister, associate professor of physics and a specialist in string theory.
“This is a time of very rapid advances in the field. You don’t know on any given day what new discovery you’re going to see posted that night on arXiv,” said Liam McAllister, associate professor of physics and a specialist in string theory. (Credit: Glaser)
via cornell

Rosetta sends back science data from dark, dry comet

via pcmag

Variables of nature

Diagram illustrating quasar observations. (Credit: J. C. Berengut, Koberlein)
Diagram illustrating quasar observations. In 2010, a research team looked at light from distant quasars that had passed through large intergalactic clouds of gas. They found evidence of some slight variation of alpha depending on the direction we looked in the sky, which would imply a spatial variation of the physical constants. This made lots of news in the press, but the findings were not strong enough to be conclusive. (Credit: J. C. Berengut, Koberlein)
via phys

The first discovery of a Thorne–Żytkow object? (PDF)

The ratios of various elements found in the sample of RSGs, where the dark gray line is the theoretical model for a RSG, the lighter grey shows a three sigma deviation from normal, and the black points show the observed ratios for the sampled stars. The red, however, are the ratios observed in the TZO candidate HV 2112- indicating some elements are present at ratios far from expected. (Credit: E.Levesque et al.)
via astrobites

Newfound comet visible in binoculars and telescopes: How to see it

Once every year or two, a comet appears in the sky that is bright enough to be seen with a small telescope or binoculars. Right now, observers anywhere in the Northern Hemisphere can see such a comet. (Credit: Credit: Starry Night Software)
Once every year or two, a comet appears in the sky that is bright enough to be seen with a small telescope or binoculars. Right now, observers anywhere in the Northern Hemisphere can see such a comet. (Credit: Starry Night Software)
via space

Works starts on new European neutron source

Sofie Carsten Nielsen, Danish science minister, and Swedish education minister Jan Björklund break ground for the €1.84bn European Spallation Source in Lund, Sweden. (Credit: ESS)
via physicsworld

Physics in the News

Wednesday, September 3, 2014

Researchers discover new clues to determining the solar cycle

Magnetic stripes of solar material – with alternating south and north polarity – march toward the sun's equator. Such observations may change the way we think about what's driving the sun's 22-year solar cycle. (Credit:  S. McIntosh)
Magnetic stripes of solar material – with alternating south and north polarity – march toward the sun’s equator. Such observations may change the way we think about what’s driving the sun’s 22-year solar cycle. (Credit: S. McIntosh)
via nasa

Finding the ‘Holy Grail’ of making smarter robots

via abcnews

Do most cosmologists accept the reality of the cosmic fine tuning?

via winteryknight

DARPA’s experimental space plane XS-1 starts development

via dailycaller

How the space craft Dawn will get the low-down on the first dwarf planet ever discovered

This image illustrates Dawn’s spiral transfer from high altitude mapping orbit (HAMO) to low altitude mapping orbit (LAMO). The trajectory turns from blue to red as time progresses over two months. Red dashed sections are where ion thrusting is stopped so the spacecraft can point its main antenna toward Earth. (Credit: NASA/JPL-Caltech)
This image illustrates Dawn’s spiral transfer from high altitude mapping orbit (HAMO) to low altitude mapping orbit (LAMO). The trajectory turns from blue to red as time progresses over two months. Red dashed sections are where ion thrusting is stopped so the spacecraft can point its main antenna toward Earth. (Credit: NASA/JPL-Caltech)
via nasa

Japan’s decade long mission to mine an asteroid

The little mushroom cap between the two high-gain antennas is the X-band low-gain antenna. The little blue thing is DCAM3, a deployable camera that will hopefully take pictures of the explosion and impact of Hayabusa's "Small Carry-on Impactor" while the mothership hides safely in the shadow of the asteroid.
The little mushroom cap between the two high-gain antennas is the X-band low-gain antenna. The little blue thing is DCAM3, a deployable camera that will hopefully take pictures of the explosion and impact of Hayabusa’s “Small Carry-on Impactor” while the mothership hides safely in the shadow of the asteroid. (Credit: Lakdawalla)
via gizmodo

Phase change memory lets a single bit act as different logic gates

Phase change materials can switch between two forms depending on how quickly they're cooled. Cool them quickly and you get an amorphous form, which provides significant resistance to the flow of electrons. Cool them slowly and they will allow electrons to flow more readily. Once cooled, these two forms remain stable, locking the differences in conduction in place. (Credit: Columbia University)
Phase change materials can switch between two forms depending on how quickly they’re cooled. Cool them quickly and you get an amorphous form, which provides significant resistance to the flow of electrons. Cool them slowly and they will allow electrons to flow more readily. Once cooled, these two forms remain stable, locking the differences in conduction in place. (Credit: Columbia University, Timmer)
via arstechnica

Rosetta set for ‘capture’ manoeuvres

Rosetta scientists will be heading to Lisbon, Portugal, next week to present their early impressions of the comet to their peers.
Rosetta scientists will be heading to Lisbon, Portugal, next week to present their early  impressions of the comet to their peers.
via bbc

Deflecting near Earth asteroids with paint

The Yarkovsky Effect: The daylight side absorbs the solar radiation. As the object rotates, the dusk side cools down and hence emits more thermal photons than the dawn side. It may be possible to exploit this effect for planetary defense.
The Yarkovsky Effect: The daylight side absorbs the solar radiation. As the object rotates, the dusk side cools down and hence emits more thermal photons than the dawn side. It may be possible to exploit this effect for planetary defense.
via thespacereview

The beginning of extra-galactic Neutrino astronomy

 An event in the IceCube neutrino telescope. Photomultipliers attached to strings buried deep in the Antarctic ice detect the bursts of light emitted when a neutrino collides with the ice and produces a muon. The event shown was generated by an upward moving muon, which was produced by an upward moving muon neutrino that passed through the Earth.  APS/Joan Tycko;
An event in the IceCube neutrino telescope. Photomultipliers attached to strings buried deep in the Antarctic ice detect the bursts of light emitted when a neutrino collides with the ice and produces a muon. The event shown was generated by an upward moving muon, which was produced by an upward moving muon neutrino that passed through the Earth. APS/Joan Tycko;
via physics.aps

Is it the era of racing for colliders’ physics?

A 1974 photo of the part named Intersection 5 (I5) of the ISR of CERN's old PS, clearly shows the layout of the magnets and the crossing of the two beams pipes. (Credit: Salem)
A 1974 photo of the part named Intersection 5 (I5) of the ISR of CERN’s old PS, clearly shows the layout of the magnets and the crossing of the two beams pipes. (Credit: Salem)
via onislam

Design completed for prototype fast reactor

Russian power engineering R&D institute NIKIET has completed the engineering design for the BREST-300 lead-cooled fast reactor.  (NIKIET)
Russian power engineering R&D institute NIKIET has completed the engineering design for the BREST-300 lead-cooled fast reactor. (NIKIET)
via world-nuclear-news

Physics in the News

Friday, August 29, 2014

First robot astronaut ‘lonely’ in space

via independent

Keck observatory gives astronomers first glimpse of monster galaxy formation

This image shows observations of a newly discovered galaxy core dubbed GOODS-N-774, taken by the NASA/ESA Hubble Space Telescope's Wide Field Camera 3 and Advanced Camera for Surveys. The core is marked by the box inset, overlaid on a section of the Hubble GOODS-N, or GOODS North, field (Great Observatories Origins Deep Survey). (Credit: NASA, ESA)
This image shows observations of a newly discovered galaxy core dubbed GOODS-N-774, taken by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 and Advanced Camera for Surveys. The core is marked by the box inset, overlaid on a section of the Hubble GOODS-N, or GOODS North, field (Great Observatories Origins Deep Survey). (Credit: NASA, ESA)
via phys.org

We are swimming in a superhot supernova soup